

Institut für Datentechnik
und Kommunikationsnetze

Technische Universität
Braunschweig

OSIRIS

Command Language

Description

Revision 1.5

IDA-OCL-0001

February 2009

Prepared by

Tim Wittrock

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 2 of: 71

Table of Contents

1 Scope ... 6

1.1 Purpose of this Document ...6

1.2 Change Record ...6

1.3 Abbreviations ...7

1.4 Documentation Conventions ...7

2 Introduction ... 9

3 Basics .. 10

3.1 Notation of Numbers..10

3.2 Symbols Scope ..10

3.3 Conditional Execution ...11

3.3.1 if then else .. 11

3.3.2 .. ? .. : 11

3.3.3 switch - case ... 12

3.3.4 for ... 13

3.3.5 while ... 13

3.3.6 do while .. 13

3.4 Functions ...14

3.5 Time- And Event Controlled Execution ..14

4 Data Types ... 15

4.1 Data Types for Local Variables ..15

4.1.1 Simple Data Types ... 15

4.1.2 Enumeration ... 16

4.1.3 User Defined Types .. 16

4.1.4 Arrays ... 16

4.1.5 Structures and Unions .. 17

4.1.6 “Constant” Variables .. 18

5 Variable Declaration ... 19

5.1 Local Variables ...19

5.2 Global Variables ...19

5.2.1 Global variables for data exchange .. 19

5.2.2 Global variables for access to certain addresses ... 20

5.3 Static Variables ..21

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 3 of: 71

5.4 Arrays ..21

6 Accessing Data ... 23

6.1 “Standard” Variables ..23

6.2 “Constant” Variables ...23

6.3 References ...23

6.3.1 Using Constant Values as Reference .. 24

6.4 Structures and Unions ...24

6.5 Arrays ..25

6.5.1 Accessing Ranges ... 25

6.5.2 Typecasting .. 26

7 Constant Values .. 28

7.1 Simple Type Constants ..28

7.2 Character Constants ..28

7.3 String Constants ...29

7.4 Complex Constants ..29

7.4.1 Structures and Arrays ... 29

7.4.2 Unions .. 30

8 Data Manipulation .. 32

8.1 Operations ..32

8.1.1 Dyadic Operators ... 32

8.1.2 Monadic Operators ... 33

8.1.3 Random Values .. 34

8.2 Array Operations ...34

8.3 Assignment Operator...35

9 Functions .. 37

9.1 User Functions ..37

9.1.1 Return Value .. 37

9.1.2 Parameters .. 37

9.1.3 Categories ... 39

9.2 Non-OCL-functions (runtime library) ...39

9.2.1 Initializing Built-in Runtime Library Functions ... 39

10 Special Commands .. 41

10.1 Sleep ..41

10.2 Wait ...41

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 4 of: 71

10.3 Signal ...41

10.4 Halt ..41

10.5 Start ...41

10.6 Size Of42

10.7 Priority switching ...42

11 Preprocessing ... 43

11.1 Comments ...43

11.2 Include ...43

11.3 Define ..44

11.4 Ifdef ... else ... endif ..44

12 Compiler Messages ... 45

12.1 Warnings ...45

12.2 Errors ..48

12.3 Fatal Errors ..51

13 List of Keywords ... 53

14 OCL Compiler & UDP Manager ... 54

14.1 Configuration ...54

14.1.1 Search Path for Including Files .. 54

14.1.2 Aborting After a Couple of Errors.. 54

14.1.3 Hold Local up to Size ... 54

14.1.4 Warning Message Suppression... 55

14.1.5 Debug Information ... 55

14.1.6 Command File .. 55

14.1.7 Symbol Table File .. 56

14.1.8 Log File .. 56

14.1.9 Compression Table ... 56

14.1.10 Preserving UDP-IDs ... 56

14.2 Compilation and Handling of UDPs ...56

14.2.1 Initialization ... 56

14.2.2 Compiling a UDP for Execution on Startup ... 57

14.2.3 Compiling Multiple UDPs at Once .. 57

14.2.4 Compiling One UDP for Execution at Certain Time(s).. 58

14.2.5 Compiling One UDP for Immediate Execution .. 59

14.2.6 Replace an Existing UDP ... 59

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 5 of: 71

14.2.7 Execute a Certain UDP .. 59

14.2.8 Remove a Certain UDP .. 60

14.3 POP Handling ..60

14.3.1 Save UDP to NVRAM ... 60

14.3.2 Load POP from NVRAM ... 61

14.3.3 Check POPs in NVRAM .. 61

14.4 Job Control for Debugging ...62

14.4.1 Pause a Certain UDP .. 62

14.4.2 Resume a Certain UDP... 62

14.4.3 Execute a Single Command of a Certain UDP ... 62

14.4.4 Quit a Certain UDP .. 62

14.5 Customize DPU-Based UDP Manager and Token Interpreter ...63

14.5.1 Set UDP Interpreter Options .. 63

14.5.2 Reset UDP Manager ... 64

14.5.3 Compiler options .. 65

14.6 Outputs ..65

14.6.1 Command Sequence File .. 65

14.6.2 Symbol Table Logfile ... 66

14.6.3 Command Sequence Information Logging ... 67

15 Index ... 69

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 6 of: 71

1 Scope

1.1 Purpose of this Document

This document is a short description of the OSIRIS command language (called OCL) and the use of
the OCL-compiler version 4.x. The language is used to create functions that operate the
experimental devices and process data from the hardware.

Chapter 2 will provide a short introduction into the tasks and qualities of the language. After that,
chapter 3 describes the main features of OCL for structured programming (like conditional
execution and loops). In chapter 4 you will find information of built-in data types and how to define
new types on demand. The next chapter (5) shows, how to use these types by declaring variables,
and in chapter 6 you will learn how to access the data represented by these variables. Since not all
values have to be variables, chapter 7 provides information for using constant values in your
program. Since you probably want to manipulate data inside your programs, chapter 8 explains data
manipulations like calculations and array operations. Chapter 9 will teach you how to use functions
(user defined as well as built-in). Special commands that are used for time and event controlling are
shown in chapter 10.

After that, we leave the description of OCL itself and read about the built-in preprocessor, which is
used for commenting and definition of symbol replacements in chapter 10.7. Chapter 12 helps to
understand the messages you may see during compilation or at runtime. Having presented a list of
all keywords used by OCL in chapter 13, the subject of chapter 14 is customizing and using the
OCL compiler and the ground part of the UDP manager.

1.2 Change Record

Date Revision Author Affected Sections

12/18/2000 0.1 Wittrock All sections

02/28/2001 0.3 Wittrock All sections revised,
new: compiler options

04/05/2001 0.4 Wittrock All sections slightly revised

05/06/2001 0.5 Wittrock logging information

07/10/2001 0.6 Wittrock POP handling, OCL init-file, complete
revision

07/18/2001 0.7 Wittrock New configuration option “search path”

08/07/2001 0.8 Wittrock New command “start”

01/07/2002 0.9 Wittrock New command “halt”, new compiler
options

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 7 of: 71

Date Revision Author Affected Sections

09/03/2002 1.1 Wittrock New declaration “PM” (global variables)

05/15/2003 1.2 Wittrock Token code compression; new settings
options: verbosity level maximum
number of messages per second; auto
start of UDPs; change in behavior of
POP save command.

11/11/2006 Wittrock New settings option: size of PM area

10/25/2007 1.3 Wittrock New feature: UDP categories (3.4, 9.1)

11/25/2008 1.4 Wittrock New feature: preserved virtual machine
mentioned in 10.5, new UDP manager
command to execute UDP on preserved
virtual machine (14.2.7).

02/06/2009 1.5 Wittrock Operator priorities updated in 8.1.1

Priority modification command
documented in 10.7

1.3 Abbreviations

RTL Runtime Library

OCL Osiris Command Language

OCT Osiris Command Token

UDP User-defined Procedure

POP Persistent Osiris Program

1.4 Documentation Conventions

The following text will specify the typing conventions that are used to explain the OSIRIS
command language syntax.

• Keywords have to be typed exactly as shown in the documentation. ↵↵↵↵ represents an end of line
(new line).

• References refer to other elements. It can be for example a user-defined name or a complex
expression defined in the documentation.

• := following a reference specifies the definition of the reference.

• [Expressions] enclosed in square brackets are optional and may be omitted.

• Enclosing (expressions) in brackets is used for grouping.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 8 of: 71

• (Expressions)+ in brackets followed by a plus may appear one or more times.

• (Expressions)* in brackets followed by a asterisk may be omitted or appear one or more times.

• Statements are lists of expressions separated by semicolon.

• The vertical rule | between two expressions indicates an alternative. You may choose either the
expression on the left or on the right side.

Examples are printed this way // comments are pla ced behind “//”

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 9 of: 71

2 Introduction

This is the documentation of the OSIRIS command language (OCL). This language allows the
creation of complex programs to solve even complicated tasks. The programs are processed by a
two-pass-compiler and executed by a token interpreter running on the DPU. The language supports
multiprocessing and time- or event-driven execution. It can be used for

• Data processing
• Commanding and batch processing
• System control

To provide easy programming, the OCL syntax is similar to the syntax of the well-known
programming language C. All of the tasks mentioned above can use common functions for data
processing, so the user does not have to solve the same problems multiple. The main differences to
C are the following:

++++ Full runtime range checking of array indices.
++++ Complex data types allowed as return values of functions
++++ Mathematical operations on all elements of an array at once
++++ Global variables at explicitly specified addresses can be used to access special memory areas
−−−− No dynamic memory management functions and pointers
−−−− Identifiers have to be unique. No multiple use of the same identifier for a type and a variable at

the same time.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 10 of: 71

3 Basics

As mentioned before, OCL is used for many different tasks. Because of this, the configuration is
divided in different parts.

• The interfaces of all UDPs and RTL functions present at the DPU are stored inside the file
OCLsym.txt . This file is generated automatically by the OCL compiler and should not be
edited by user. All following runs know functions generated by an earlier compiler run (unless
they are deleted explicitly from symbol table) without any repetition of the function
declarations. A simpler version of this symbol table (without exact parameter information) is
available at DPU.

• Data types and global variables that are used repeatedly can be defined in a common file that is
included before each compilation. In contrast to function definitions, data type definitions are
not saved for later compiler runs.

• The OCL compiler can be used to compile a couple of UDPs at once as well as commands for
immediate or delayed execution.

• The OCL compiler generates a command sequence for upload (and execution) of the token code
and writes it to a file that can be sent to the DPU's UDP-manager.

• Sources of all compiled UDPs are archived in combination with their time stamps and other
additional information.

3.1 Notation of Numbers

There are four different ways to specify constant integer values:

• Decimal, the standard, consisting of digits from 0 – 9.
• Hexadecimal, specified by leading 0x (zero x) followed by a string of 0 – 9, a – f or A – F.
• Octal, specified by a leading 0 (zero) followed by a string of 0 – 7.
• Dual, specified by leading 0b (zero b) followed by a string of 0 and 1.

The decimal number 29 for example may be represented by 29, 0x1d , 035 or 0b1101 . These
notations are all equivalent.

3.2 Symbols Scope

Of course, you do not have to work with fix values, but you can use abstract symbols. These
symbols can be used anywhere inside that scope in which they have been defined (or in a sub-scope
of it). Symbol definitions are not valid outside this scope. It is not allowed to define a symbol
multiple times inside the same scope, but you can overwrite the definition of a symbol inside of a
sub-scope. Such a redefinition does not affect the definition of the embedding scope but only inside
the sub-scope. After leaving the sub-scope, the former definition of the symbol is restored and can
be used as before.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 11 of: 71

Whenever a symbol is used, the compiler looks for its current definition. It starts in the current
scope. As long as the symbol is not found, the search will be continued in the next upper scope. A
scope is enclosed by braces like that:

{ scope }

A scope may contain as many sub-scopes as desired, for instance:

{ scope { sub-scope1 } { { sub-sub-scope } sub-scope2 } }

� Example
{
 unsigned long A; // define A to be an unsigned lo ng integer variable
 A = 0; // set the value of A to zero
 { // enter a sub-scope
 long B; // define B to be an long integer variable
 A = 2; // set the symbol A (char) from th e outer scope to 2
 B = A; // assign A’s content to the long integer B
 } // leave the scope, A contains 2, B is lost.
 { // enter a new sub-scope
 long A; // create a new symbol A. The A fr om the outer scope is not
 // accessible inside this scope an y more
 // A = B; // since B is neither defined insi de this sub-scope, nor inside
 // the outer scope, it is not acce ssible here.
 A = 12345;
 } // leave this scope, the new defin ition and value of A is lost.
 A = A + 1; // increment the unsigned long var iable A. It now contains the
 // value 3 (remember the change fr om 0 to 2 inside the first
 // sub-scope!)
}

3.3 Conditional Execution

The syntax of conditional execution of program sequences is similar to C. The only exception is,
that there are no goto s implemented in OCL.

3.3.1 if (..) .. else

if (expression) compound_statement [else compound_statement]

This statement is equivalent to the ANSI C statement. If the value of expression is non-zero (or
true), the first compound_statement is executed. Otherwise (if expression is zero resp. false) the
optional else -branch is executed. In nested if -statements the first else is assumed to belong to the
last if .

3.3.2 .. ? .. : ..

The result of an expression like this

bool_expression ? yes_expression : no_expression

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 12 of: 71

is yes_expression, if the bool_expression is true (or non-zero, anyway) and no_expression
otherwise. Only the resulting expression will be evaluated. The a ? b : c expression cannot be used
as destination of an assignment or as non-constant reference parameter.

long lMax, l1, l2;
...
lMax = (l1 > l2) ? l1 : l2; // this assigns the m aximum of l1 and l2 to lMax

The type of the result of this expressions is the smallest common type of both possible results, if
both are simple types. If the yes_expression and the no_expression are more complex, they have to
be exactly of the same type. If necessary, use explicit type conversions to get fitting types.

unsigned long auc[4];
bool b;
...
auc = b ? “yes“ : “no\0“; // both arrays have to be of the same size!

3.3.3 switch - case

switch (switch_expr) { (case case_expr : statement_list)* [default : statement_list] }

This control flow statement is similar to the C switch-command (but not 100% equivalent).

case_expr := expression | (low_limit .. high_limit) (, case_expr)*

low_limit := high_limit := expression

The values of the case_exprs are successively evaluated and compared to the value of the
switch_expr (which is evaluated only once, on entering the switch statement). The first fitting
case 's statement_list will be executed. Opposite to C, the expressions may be variables as well and
the switch_expr does not have to be of a simple type.

statement_list may contain any code as well as the break command, which causes the machine
immediately to continue the execution after the switch statement. If the break command is
omitted, the execution will run through all following case statement_lists (without evaluating the
case_expr) until a break or return command is reached.

The case_exprs may be any constant or variable value as well as a range, defined by .. between the
lower and the upper limit (in this order!):

case 2 .. 5 : statement_list

This executes the statement_list on 2, 3, 4 and 5. You may also define comma-separated lists of
constant or variable values or ranges as expression like this:

case 2 .. 5 , 7 : statement_list

This executes the statement_list on if the switch_expr is equal to 2, 3, 4, 5 or 7.

Of course it is possible to use the normal C-like syntax for specifying lists instead of using commas:

case 2 .. 5 :
case 7 : statement_list

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 13 of: 71

These two lines have the same effect as the line above.

The first case that fits the switch expression will be executed, regardless of any other fitting case
expression following. Therefore the default statement has to be the last in the list, because it fits
any value and would render all further case s useless.

Please note that switch does not use jump tables. For performance reasons you should make sure
that the most frequently used branches are placed on top of the list of case s.

3.3.4 for

for ([init] ; condition ; [modify_expression]) statement

The init expression normally initializes the counter variable before the first pass. The counter
variable is checked inside the condition expression at the beginning of each pass. The statement
inside the loop will be repeatedly executed, as long as the condition-expression is true. The optional
third modify_expression modifies the counter variable at the end of each pass.

statement may contain any code as well as the break and the continue commands. The break
command causes the machine to leave the complete for loop immediately and continue with the
next command. In contrast to that, the continue command causes the machine to leave the
statement of the current pass only and continue with the execution of the loop at the
modify_expression and condition.

3.3.5 while

while (condition) statement

The condition is evaluated at the beginning of each pass. The loop statement will be repeatedly
executed as long as the condition is true (i.e. non-zero).

statement may contain any code as well as the break and the continue commands. The break
command causes the machine to leave the complete while loop immediately and continue with the
next command. The continue command causes the machine to leave the statement of the current
pass and continue with the execution of the condition.

3.3.6 do while

do statement while (condition)

The loop will be executed while condition is true. Since condition is evaluated at the end of each
pass, statement will be executed at least one time.

The break and continue commands work as described before (see 3.3.5).

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 14 of: 71

3.4 Functions

You can build functions that provide actions and calculations that have to be done by multiple
program parts. This allows using the same code from different parts without duplicating. It is
possible to deliver variables into the functions and receive results from it, so the code of the
function itself can be hold quite versatile.

[category] resulttype functionname (parameters) { body }

The function can be called using the functionname from any other code. The body contains all
desired actions and calculations and can access the parameters provided by the calling code. The
function can return a result of the type resulttype that can be used in further operations of the calling
code. The calling code can use the function call like any other value of the type resulttype. The
function’s category may be specified by the keywords critical and safe to allow the creation of
robust and reliable UDPs; if the category is omitted, no special protection is applied to the function.

It is even possible to call the function’s code recursively. Functions will be subject of section 9.1.

� Example

The fibonacci numbers are recursively defined as sum of the two predecessors:
fib(0) := fib(1) := 1
fib(x) := fib(x-1) + fib(x-2)

This definition can be put into a simple function:
long fib (long x)
{
 if (x < 2)
 return 1; // let the res ult be 1
 else
 return (fib (x-1) + fib (x-2)); // return the sum as result of fib (x)
}
...
{
 long Value;

 Value = fib (12); // assign the fibonacci nu mber of 12 to Value
}

3.5 Time- And Event Controlled Execution

Some tasks may have to be repeatedly executed once in a while. This can be done by using an
endless loop that waits for a certain time (sleep , see 10.1) or for the arrival of a certain event
(wait , see 10.2) before continuing.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 15 of: 71

4 Data Types

Like C, the OSIRIS command language operates with variables of previously (user-) defined types.
The type of a variable has to be declared explicitly before the first use (see section 3.2 for more
information about the scope of type and variable definitions). Unlike C, you may assign variables of
different types, as long as they only differ in the type names. Types that consist completely of
elements of the same type at the same relative positions are accepted as equal.

Different types of the same length may be assigned, but cause warnings.

OCL does not allow forward declaration of data structures.

4.1 Data Types for Local Variables

OCL data types are very similar to C data types with only one major exception: OCL contains no
pointers. For creating function calls with returned parameters references of variables are used
(similar to C++).

OCL does not allow explicit type conversions of complex data types. Only simple types or arrays of
simple types may be converted explicitly by the user to prevent compiler warnings. If variables of
different types are mixed in an expression, the smaller type will be converted implicitly to the larger
type to prevent information loss. Variables of different types with the same size may be assigned to
each other but will cause warnings.

The following description will explain the main syntax of definitions.

4.1.1 Simple Data Types

Type Description

[signed | unsigned] long 32 bit values. If [signed | unsigned] is
omitted, the default signed is used.

double 64 bit precision floating point value

bool 1 bit unsigned value stored inside a long
integer (true == 1, false == 0)

void Placeholder for “no value”.

The void type can be useful as type of a reference parameter, because this prevents type checking in
calls to external functions. Although it is possible to assign anything to a void reference, it is not
possible to assign a void type to any other variable. It is not even possible to do an explicit type
conversion from void to any other type. That means, it is not possible to access data of void
variables by using OCL.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 16 of: 71

4.1.2 Enumeration

Enumeration types may be defined like in C:

enum enumname { valuename [= constant] (, valuename [= constant])* }

The valuenames have to be unique. They represent long integer values. If no constant is specified,
the value will be set to the value of the previous valuename incremented by 1.

Enumeration variables or constants (like the valuenames) may be assigned to long variables without
problems, but assigning a long variable to an enumeration variable will cause warnings.

Please note that the increment and decrement operators do not evaluate the predecessor or successor
of the current value but only increment or decrement its integer value by one. Note also that it is not
possible to use a valuename to specify the (part of) a constant value of another valuename before
the enumeration definition is completed.

� Example
enum Colors { BLACK, RED = 10, ORANGE, YELLOW, GREE N, BLUE, VIOLET, WHITE = 20 };

This defines the data type Colors and the constants BLACK (value 0), RED (defined to represent 10),
ORANGE (11), YELLOW (12), GREEN (13), BLUE (14), VIOLET (15) and WHITE (20). You may use these
constants instead of their values in your program whenever you want. Please note that the constants
are no strings. Even when you use a enumeration constant (like YELLOW), the compiler will handle it
as if the value 12 is specified directly.

4.1.3 User Defined Types

The user may define types of specified names by using a statement like this:

typedef basetype newtypename ([number_of_elements])*

This statement defines a new type named newtypename that matches the basetype. The basetype
may be any simple or more complex or even user-defined type. If the type definition is followed by
one or more [number_of_elements] , the new type becomes an array of basetype elements with
the given dimensions.

4.1.4 Arrays

Array types can be defined like in C by a variable declaration followed by one or more pairs of
square brackets defining the dimension. To define an array type you have to use typedef :

typedef basetype newtypename ([number_of_elements])+

This creates a new data type named newtype, that is an array of basetype elements. For more
information about arrays see section 5.4.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 17 of: 71

� Example
typedef unsigned long textlinetype [80];
typedef textlinetype textscreentype [25];

The first line defines a type named textlinetype that consists of 80 unsigned longs. This type can
be used to represent a line of a conventional text-terminal. The second line defines a type
textscreentype that consists of 25 of those text lines. If you do not need the definition of a single
text line, you may specify the textscreentype with the following line instead:

typedef unsigned long textscreentype [80][25];

4.1.5 Structures and Unions

Structures are bundles of variables that will be placed one after another in the memory. Unions are
bundles of variables that will be placed at the same start position in the memory. The definition of
structures and unions is identical to C syntax:

(struct | union) [typename] { (vardefinition ;)+ }

vardefinition may be any definition of variables. It may be a structure or union itself. In this case,
omitting the name of vardefinition will put its elements flat into the hierarchy.

If you want to use the data structure multiple times, you should define an own type. You can do this
either using the keyword typedef (see 4.1.3) or specifying typename.

� Example
struct TwoChars // definition of the type TwoChar s
{
 long c1;
 long c2; // the address of c1 is (address of c1)+1
};

This is equivalent to
typedef struct // definition of the type TwoChars
{
 long c1;
 long c2;
} TwoChars;

The definition of a union may look like that:
union DemoUnion
{
 struct
 {
 long c1;
 long c2;
 };
 long s; // c1 is identical to s
};

You will find examples for even more complex structures in section 6.4.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 18 of: 71

4.1.6 “Constant” Variables

Variables and parameters can be declared to be constant values by using the keyword const .
Constant variables cannot be altered. The keyword const is important if you want to allow constant
values as reference parameters. The declaration of constant parameters may look like this:

void Something (unsigned long& aul1[], const unsign ed long& aul2[]);

This line declares the parameter auc2 of the function Something to be constant. That means, it is not
allowed to use any write access to auc2 inside the function.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 19 of: 71

5 Variable Declaration

The OSIRIS command language contains a C-like variable declaration. The only major exception is
the absence of pointers, because these variables could easily cause program crashes or unexpected
side effects. Use of global variables is limited to user specified memory areas. Please remember that
using global variables may cause unexpected side effects, especially in multithreading
environments.

5.1 Local Variables

Local variables may be declared like this:

type variablename [= constant] (, variablename [= constant])*

The type may be any of the data types mentioned in the previous chapter (4, Data Types).

The constant is used to define an initial value for the declared variable. Static variables will be set
to this value only once (before the first execution). If the initial value is omitted, the variable will
not be initialized and may contain random values (static variables will be initialized with 0,
however)

Normally, local variables are located on the local stack, which allows fast accesses for calculations.
Unfortunately, the size of the local stack is limited. To prevent early stack-overflows, the compiler
will automatically generate code for storing large variables in dynamically allocated memory.
Remember that this causes (internally) a little bit more overhead on accesses to elements of large
variables.

5.2 Global Variables

There are two different kinds of global variables: They can be used to transfer data between
different UDPs (1) or to access certain memory areas inside image memory (e.g. for image
processing) (2).

5.2.1 Global variables for data exchange

For storing and transferring data between UDPs, global variables should be placed inside the
program memory (better data protection). It is possible to specify the location of the variable inside
a preserved area with an offset relative to the beginning of the area like this

PM type variable at offset ;

But it is also possible to place the variable directly behind the previously declared global variable by
omitting the offset, like this:

PM type variable ;

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 20 of: 71

The absolute address of global variables inside program memory can not be specified.

Accesses to data structures inside program memory can not be interrupted by accesses from other
UDPs. This helps to ensure data integrity by preventing accesses to partial modified (= probably
invalid) data structures.

Struct tTempSensor
{
 long lTime;
 long lTemperature;
};

PM tTempSensor oGlobTemp[20];

void ProcessTemperatures ()
{
 tTempSensor oLocalTemp[20];

 oLocalTemp = oGlobTemp; // this assignment canno t be interrupted
 // all time entries of oLocalTemp correspond to t he temperatur entries
 // now continue with the local copy, since global data may change…
 ...
 // do not use the following lines:
 oLocalTemp[0].lTime = oGlobTemp[0].lTime;
 // oGlobTemp[0] may change now
 oLocalTemp[0].lTemperature = oGlobTemp[0].lTemper ature;
}

void BuiltTemperatures ()
{
 tTempSensor oLocalTemp[20];

 // fill the local temperatur and time arrays
 ...
 // write the whole array at once
 oGlobTemp = oLocalTemp;
}

5.2.2 Global variables for access to certain addresses

If certain memory addresses have to be accessed, global variables have to be declared as follows:

fixed type variable at address ;

The absolute address of the global variable has to be specified explicitly inside the declaration. This
kind of global variable should not be used for data storing, since the image memory is not well
protected against data corruption.

The variable may be an array or any other type that will be stored beginning at address (inside the
DPU's local memory). Please note that address should be chosen with care, since accessing illegal
memory can cause program crashes (the compiler can not check the integrity of the specified
memory).

After this declaration, variable can be used like any other local variable in all UDPs.

Global variables are not initialized automatically.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 21 of: 71

5.3 Static Variables

Variables may be declared static by using the keyword static . While 'normal' variables do not
hold their values when the scope is left, static variables remain in memory and do not alter the
stored value between leaving and re-entering the scope. This behavior is similar to C.

Since accessing static variables is slower than accessing internal variables you should use static
variables only if necessary.

Static variables will be initialized with zero, unless another constant value is specified inside the
declaration. The initialization of the static variable is done only once (at compile-time).

5.4 Arrays

Arrays may be declared like follows:

 type arrayname ([number_of_elements])+

As you see, it is possible to declare one-, two- or any other multidimensional array variable just by
specifying a sequence of desired number of elements.

unsigned long asz[20][80];
unsigned long al[20*80];

The first line specifies a two-dimensional array of longs. It may be seen as a list of 20 lines with 80
columns each. Using asz[5] would specify the whole sixth line. asz specifies the whole block of 20
* 80 values.

The second line specifies a one-dimensional array al of the same size as asz . The main difference is
the access to elements:

• asz[line][column] is equivalent to al[line*80 + column] .
• asz[line] is equivalent to al[line*80, 80] .
• asz is equivalent to al .

number_of_elements may be omitted in special cases:

• Inside of function headers to allow passing arrays of variable length to functions. If the number
of elements is not specified, the parameter has to be declared as reference (using &). Runtime
range checking will prevent illegal memory accesses.

• Inside of unions. The size of the array will be set to the maximum size that fits into the union
without changing the union's size. Runtime range checking is not affected; it is not possible to
access memory outside the union. The actual size of the array is known at compile time, so
range checks are done at compile time already.

• If you specify a default value for the array variable, you may omit the number of elements of the
outermost dimension, since it is given by the size of the default value. The actual size of the
array is known at compile time, so no runtime checks are needed.

Note that only the size of the first dimension may be omitted, anyway. So the syntax of the
declaration of arrays with unknown size at compile time is one of the following:

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 22 of: 71

type varname [] ([length])*

type arrayname [] ([number_of_elements])* = default_value ;

For instance, you may specify an array of three strings like this:
unsigned long asz[][7] = {“first ”, “second”, “thir d ” };

This is equivalent to the following declaration:
unsigned long asz[3][7] = {“first ”, “second”, “thi rd ” };

Please note that the strings “first” , “second” and “third” are assumed to be arrays with 7 unsigned
longs each. The length has to fit exactly for assignments.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 23 of: 71

6 Accessing Data

Generally, all accesses to local or global memory are handled identically. It makes no difference for
the user to use local variables or external data. Basically, accessing variables is very similar to C,
with a few exceptions that will be described in this chapter

6.1 “Standard” Variables

The standard variables (local or global variables) can be accessed like in C.

Although local variables use memory in the machine stack, global variables use own memory and
external variables use memory mapped by the hardware driver, the user does not have to pay
attention for it – the syntax of all accesses is identically.

6.2 “Constant” Variables

Variables that are declared to be constant (const) can be used only for read accesses. It is not
possible to modify their contents (write access). Constant variables will probably be in most cases
parameters of a function that may not be modified in any way inside the function.

void Something (unsigned long& auc1[], const unsign ed long& auc2[])
{
 auc1[0] = ’1’; // allowed, since auc1 is not const
 // auc2[0] = ’2’; // error, auc2 is constant and must not be altered.
 auc1[1] = auc2[2]; // ok, auc1 may be altered and auc2 may be read
}

void Anything ()
{
 unsigned long auc[100];
 const unsigned long cauc[] = “constant”; // assi gnment in definition is ok

 // Something (“forbidden”, “allowed”); // since the first parameter is not
 // declar ed to be constant, it is not
 // allowe d to use a constant here.
 // Something (cauc, auc); // same as before: first parameter must not be
 // constant. The se cond parameter may be variable,
 // but can not be a ltered inside the function
 Something (auc, auc); // ok, but the second para meter is not initialized yet.
 // Since both parameters a re references, auc1 and auc2
 // will access the same me mory inside the function.
 Something (auc, cauc);

 // cauc[3] = ’a’; // not allowed, since cauc is constant!
}

6.3 References

References to variables are allowed only in function headers. All accesses to the referenced
parameter inside the function will be accesses on the outside variable itself. A parameter is defined
as reference by following the type by &:

type & parametername

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 24 of: 71

The type may be any simple or user defined type. Note that & is not an address operator. Its use is
allowed only in the parameter list of function declarations, not to build a reference return type.
Generally, the source type and the destination (reference) type have to fit exactly, typecasting is not
possible.

6.3.1 Using Constant Values as Reference

You cannot assign constant values to reference-parameters as long as the parameter is not specified
to be constant by using the keyword const in the function declaration. Parameters declared to be
constants may not be altered inside the function (see 4.1.6).

6.4 Structures and Unions

Elements of complex data structures (struct and union) can be accessed like in ANSI C:

datastructure . elementname

The datastructure may be an element of any other data structure (array, struct or union) itself. Since
elements of unnamed substructures are put flat into the superior data structure, they are accessed
like any other element of the superior structure (without an additional . that would indicate a deeper
hierarchy).

You can copy whole data structures. Local structures and unions may be byte-filled with a constant
value by assigning a constant char (no variables and no values that do not fit into 8 bits!) to the
whole structure or union. This feature is supposed to be used for fast initialization of all bits to a
defined state, so the constant will be probably in most cases be zero (no bit set) or 0xff (all bits set).
The syntax is the following:

datastructure = constant_char_value

� Example

(Note: The type TwoChars has been defined in section 4.1.5 already.)
union // definition of the variable SimpleUnion
{
 TwoChars; // var name omitted, creating Simple Union.c1 (offset 0) and
 // SimpleUnion.c2 (offset 1)
 long s; // creating SimpleUnion.s (offset 0)
 struct // creating SimpleUnion.TwoUnsigned (offset 0)
 {
 unsigned long uc1; // SimpleUnion.TwoUnsigned .uc1 (offset 0)
 unsigned long uc2; // SimpleUnion.TwoUnsigned .uc2 (offset 1)
 } TwoUnsigned;
 long ac[]; // create an array of longs that is as large as possible to
 // fit inside this union without enl arging it. The resulting
 // array ac will consinst of 2 eleme nts here.
} SimpleUnion;

SimpleUnion.TwoUnsigned.uc1 = SimpleUnion.c2;

You can also use a previously user-defined type:
union SimpleUnionType // definition of the type Si mpleUnionType

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 25 of: 71

{
 TwoChars SubChars; // var name given, creating XYZ.SubChars.c1
 // (offset 0) and XYZ.SubCha rs.c2 (offset 1)
 long s; // creating XYZ.s (offset 0)
 struct // creating a substructure without n ame. (offset 0)
 {
 unsigned long uc1; // XYZ.uc1 (offset 0)
 unsigned long uc2; // XYZ.uc2 (offset 1)
 };
 long ac[]; // create an array of characters tha t is as large as possible to
 // fit inside this union without enl arging it. The resulting
 // array ac will consinst of 2 eleme nts here.
};
// since this is just a type definition, there are no sub-elements accessible.
// After declaring a variable of this type, you are able to access its elements
// by replacing the XYZ with the variables name.

SimpleUnionType SecondSimpleUnion; // declare a v ariable of this type

SecondSimpleUnion.uc1 = SecondSimpleUnion.SubChars. c2;

Please note that SimpleUnion and SecondSimpleUnion contain different unnamed substructures, but
represent the same internal structure.

6.5 Arrays

The access on single elements of Arrays is just like handled in C:

array [index]

The array may be an element of any other data structure itself.

Arrays may be byte-filled with a constant value by assigning a constant char value to the whole
array. It is not possible to use variables (even if they are declared to be constant) or non-char values
as source for byte filling.

6.5.1 Accessing Ranges

You may access a subset of an array at once by specifying a range of elements. Since all specified
elements has to build one block without gaps, the range definition is allowed only for the last
specified dimension and may not be followed by any further element specification. There are two
different ways to specify array ranges:

array_variable [first .. last]

The first value has to be less than last. This returns the elements of the array starting at index first
and ending with index last. The other way is to specify the starting element and the number of
elements inside the range:

array_variable [first , size]

size specifies the number of elements and has to be a value equal or greater than zero, first may be a
variable that contains the value for the index of the first element of the specified range.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 26 of: 71

It is possible to use ranges for copying a part of an array into another part of the same array, even if
the source and destination areas overlap.

For performance reasons you should prefer using array ranges instead of loops over array elements.
This refers to assignments as well as for simple operations (see 8.2 also).

Please note that you must not use array ranges of variable size for calculations or accesses to PM data
in functions of category critical or safe .

� Example
union DummyUnion // size specified by the included structure: 7 bytes
{
 char ac[]; // length will be set to 7 elemen ts (7 bytes)
 long al[]; // length will be set to 1 elemen t (4 bytes)
 short as[]; // length will be set to 3 elemen ts (6 bytes)
 char aac[][3]; // will be set to aac[2][3] (6 by tes)

 struct // size is 7 bytes
 {
 short s;
 long l;
 char c;
 };
};

void DummyFunction (char& aac[][3]) // a variable number of 3-character strings
{
 DummyUnion u;
 long i = 1;
 short as[8]; // array of 8 short elements, the r esulting size is 16 bytes
 short as2[20];
 DummyUnion aaU[10][8];

 u.aac[i] = aac[4]; // accessing the parameter ac c[4] may exceed the range!
 // accessing u.aac[i] is rang e checked at runtime (access is
 // limited to element 0 and 1)
 as = 0xAA; // fill all 16 bytes of 'as' with value 0b10101010
 as2[10..17] = as; // assignment to an 8 short l ong subset of as2

 aaU[3][3..5] = aaU[2][1..3]; // ok
 aaU[1..4] = aaU[5..8]; // ok
 aaU[1..4] = aaU[3,4]; // ok, the overlapp ed copy is handled correctly
 // aaU[3][3..5].s; would cause an error, since i t is not allowed to refine
 // specification (.s) after a ra nge ([3..5])
 // aaU[1..2][2]; is not allowed for the same r eason.
}

6.5.2 Typecasting

Variables of a certain type can be converted into other types explicitly by entering a type cast
command:

(typename) variable

Explicit type casting can be used to suppress compiler warnings that would occur on implicit
conversions.

Typecasts are possible in the following cases:

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 27 of: 71

• The source type has the same physical size as the destination type. The source data itself will not
be changed but handled as if it is of the destination type.

• Source and destination types are simple types. The source will be shrunk or enlarged to fit the
destination type.

• Source and destination types are arrays with the same number of elements. The elements are
converted like described before.

Other type conversions are not handled.

It may be helpful to use a typecast for specifying the data type of constant values. Since the data
type of 0xffff can be either signed (-1) or unsigned short (65535), the result of an operation can be
quite different, depending on the interpretation of the constant type. The OCL compiler takes all
constants as unsigned values, as long as no negative sign occurs.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 28 of: 71

7 Constant Values

Constant values can be used instead of variables for read-only accesses. It is not possible to use
constant values as destination of data. Constants may not be used as non-constant reference
parameter to functions.

7.1 Simple Type Constants

The format of constant values of a simple type is described in section “Notation of Numbers” (3.1).
These constants may be used as initial value, as parameter, as assignment source and even as
operand of any calculation.

Constant values between 0x00000000 and 0x7fffffff have no fixed sign and may be used as signed
or unsigned values, unless a negation (-) or type cast occurs. Values between 0x80000000 and
0xffffffff are assumed to be unsigned integers.

7.2 Character Constants

Character constants are single unsigned long values. A character constant is specified as follows:

‘ character ‘

The character may be any ASCII character as well as the special characters described below.

Some special characters can be specified inside of a string by a leading backslash:

newline (line feed) NL (LF) \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

alert BEL \a

backslash \ \\

question mark ? \?

single quote ’ \’

double quote ” \”

octal number ooo \ ooo
hex number hh \x hh

The octal and hexadecimal representation can be used to specify any character. Octal numbers may
consist of up to three digits between 0 and 7; hex numbers may consist of one or two digits between
0 and f (you may use capital letters also).

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 29 of: 71

7.3 String Constants

String constants are zero-terminated one-dimensional arrays of unsigned long values. A string
constant is specified as follows:

“ string “

The string may be any sequence of characters (see 7.2 for information on non-ASCII-characters).
The resulting array will contain the whole sequence with an additional zero byte at its end. The
constant string source may be shorter than the destination without causing any warning or error.

A string constant may be handled like any other array.
...
unsigned long szText[8] = “abcdefg”; // fill szTex t with ‘abcdefg\000’
szText = “abcdefghijklmnop”[2,8]; // fill szTex t with ‘cdefghij’
if (_memcmp (“bcdefgh”, szText)) // compare sz Text with ‘abcdefgh\000’
 { ... }
...

A string constant may be defined over multiple lines in two different ways:

• It may be ended with a double quote, intercepted by white spaces or comments and continued
with a further double quote. All white spaces or comments between the inner double quotes are
ignored; all other texts will cause errors.

• The string may be stopped at end of line by a single backslash and continued directly at the
beginning of the next line. All white spaces in front of the second line are included into the
string. It is not possible to place any ignored text inside the string with this method.

sz = “first part ” // this is continued...
 “second part”; // ...here. sz contains now “fi rst part second part”
sz = “first part\
 second part”; // sz contains now “first part second part”

7.4 Complex Constants

Complex constants can be used as initial value, as parameter or as assignment source without
problem. Since the type of complex constants is not determined non-ambiguous, it is not possible to
use as operand of a calculation. In that case, you have to execute an explicit type cast on this
constant.

It is possible to specify complete constant data structures (struct, union or array) by putting the
desired values inside of braces.

7.4.1 Structures and Arrays

Since structures and arrays consist of multiple elements, it is necessary to define a list of all
elements as follows:

{ const_element (, const_element)* }

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 30 of: 71

This defines a constant structure or array consisting of the specified const_elements. Any of the
const_elements may be a complex constant itself.

� Example
struct strConstDemo
{
 long l;
 unsigned long sz[6];
 struct
 {
 long s;
 long c;
 };
};

void ConstCall (const strConstDemo& p)
{
 // initialize static variable v. v.sz is set to ‘GSEOS\000’
 static strConstDemo v = {0x12345678, “GSEOS”, {12 345, 0b10101101}};

 // now set v to a new value. v.sz is set to ‘GSEO S5’ without trailing zero byte
 v = {0x87654321, {‘G’, ‘S’, ‘E’, ‘O’, ‘S’, ‘5’}, {1, 2}};

 ConstCall ({0xaffe, “call”, {0xcafe, 0xae}});
}

7.4.2 Unions

The definition of constant unions consists of the specification of the first sub-symbol’s value only,
because all sub-symbols share the same memory and cannot be set independently.

{ const_element }

This expression defines a constant union with its first element set to const_element. If the first
element of the union is shorter than the complete union, the upper bytes of the union are filled with
zero.

� Examples
union uniConstDemo
{
 struct
 {
 unsigned long sz[6];
 long s;
 long c;
 };
 long l;
};

void ConstCall2 (const uniConstDemo& p)
{
 // initialize static variable v. v.sz is set to ‘GSEOS\000’. sz.l is not
 // accessible for union-constants
 static uniConstDemo v = {{“GSEOS”, 12345, 0b10101 101}};

 // now set v to a new value. v.sz is set to ‘GSEO S5’ without trailing zero byte
 v = {{{‘G’, ‘S’, ‘E’, ‘O’, ‘S’, ‘5’}, 1, 2}};

 ConstCall2 ({{“call”, 0xcafe, 0xae}});
}

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 31 of: 71

If you want to use complex constants in calculations, you have to specify the type of the constant
using type conversion:

typedef long tal[4];
tal al;
long s;

al = s * (tal) {123, 456, 789, 101112};

This assigns the result of the array multiplication to al . Array operations like this and other data
manipulations will be subject of the next chapter.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 32 of: 71

8 Data Manipulation

Data manipulation may be any calculation or re-arranging of arrays.

Internally all calculations are executed in four bytes long integer or eight bytes long floating point
variables. The operands are converted into the according type before the operation.

8.1 Operations

8.1.1 Dyadic Operators

The following table lists all operators that need two operators. The resulting type of these operations
is the smallest type that can store both operands.

 priority a × b a = a × b a = a × 1

Addition 3 a + b a += b ++ a

Subtraction 3 a – b a -= b -- a

Multiplication 2 a * b a *= b

Division 2 a / b a /= b

Modulo 2 a % b a %= b

Power (ab) 1 a ** b

And (bitwise)

(logical)

7

11

a & b

a && b

a &= b

Or (bitwise)

(logical)

9

12

a | b

a || b

a |= b

Exclusive or 8 a ̂ b a ̂ = b

Equal 6 a == b

Not equal 6 a != b

Less than 5 a < b

Less or equal 5 a <= b

Greater than 5 a > b

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 33 of: 71

Greater or equal 5 a >= b

Shift left 4 a << b

Shift right 4 a >> b

Maximum 10 a >? b

Minimum 10 a <? b

The operands a and b may be simple types or even arrays of simple types. See the section 8.2 (Array
Operations) for further information. Bitwise operations cannot be used on floating point values. The
operands of logical operations are converted to boolean before execution (non-zero becomes true,
zero values become false). The result type of logical operations and comparisons is boolean.

8.1.2 Monadic Operators

The built-in operators that need only one operand are shown in the following table.

 operator annotation

Negation (numeric) - a result type is signed

Negation (bitwise) ~ a undefined on floating
point values

Negation (logic) ! a result type is boolean

Absolute value abs a result type is unsigned

sine sin a result is floating point

arcsine asin a result is floating point

cosine cos a result is floating point

arccosine acos a result is floating point

tangent tan a result is floating point

arctangent atan a result is floating point

natural logarithm ln a result is floating point

exponential e exp a result is floating point

decimal logarithm log a result is floating point

exponential 10 10 ** a see ‘power’ operation
in section 8.1.1
(Dyadic Operators)

The unary_expression “a” may be any single value or array (see section 8.2) as well as more
complex expressions within brackets () .

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 34 of: 71

� Example for Calculations
{
 long l1 = 12345;
 long l2 = 24680;
 long l3;
 double d;

 l3 = l1 <? l2; // l3 = 12345 (= minimum of 12345 and 24680)
 d = l3 * 0.321;
}

8.1.3 Random Values

Pseudo random values can be generated using the keyword

random

It returns a double value 0 ≤ x < 1. It is also possible to use this command to generate values
between 0 and a specified value:

random (limit)

The result will be a random value of the same type as limit . It will be inside the interval [0, limit [.
This command can be used as well to generate arrays of random values. In this case limit has to be
an array of the desired type, and its elements represent the upper limit for the value of the
corresponding random element. That means, the limit of the random value may be specified
separately for each element.

The random number generator can be initialized using the command

seed ([expression])

This command sets the starting point of the random number generator to the value of expression. If
expression is omitted, the generator will be initialized with a value depending on the system time
and a pseudo random number generated before the re-initialization.

� Example
{
 long l1 = 12345;
 unsigned long auc1[10] = “abcdefghi”;
 double d;

 auc1 = random (“123456789” – ‘1’); // no zero ter mination!!!
 d = random * 10; // 0 <= d < 10
 l1 = random (l1);
}

8.2 Array Operations

All mathematical and logical operations may be used on arrays as well as on single elements. This
method is faster than a self-made loop over all elements.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 35 of: 71

An operation between a simple type value and an array will evaluate the operation on the value and
each element of the array. The resulting array will contain the same number of elements as the input.
The type of the elements is the same as the type of the result of the according non-array-operation.

An operation between two arrays will process the corresponding elements of both arrays.

Multidimensional arrays will automatically be flattened before processing. That means that the
result of an array operation will always be a one-dimensional array, regardless of the number of
dimensions of the operands.

Remember: These array operations are no matrix- or vector-operations!

It is not possible to use functions that are defined for scalar parameters for processing whole arrays
instead. This is a feature of built-in operations only.

Please note: Functions of category critical or safe are not allowed to execute array operations
on variable sized arrays.

� Example
{
 unsigned long auc1[10] = “abcdefghi”;
 unsigned long auc2[10] = “ihgfedcba”;
 unsigned long auc3[10];
 double ad[10];

 auc3 = auc1 >? auc2; // auc3 = “ihgfefghi”
 auc3[0,5] = auc3[0,5] + (‘A’ – ‘a’); // auc3 = “ IHGFEfghi”
 ad = sin auc2; // calculate the sine of the AS CII values
}

8.3 Assignment Operator

The assignment operator can be used for assignments of simple type values as well as arrays and
complex data structures. Even the assignment of array ranges is allowed (and is much faster than
subsequent accesses to single elements inside of loops).

Please note that it is not allowed to access variable sized array ranges in the PM global memory
pool, if the function’s category is critical or safe .

Besides of this normal assignment of values to variables of the same type, the assignment operator =
may be used to fill all bytes of a complex data structure (like a union, structure or an array) with a
user defined value. This value has to be a character constant.

complex_data = constant_char

complex_data may be a union, structure or an array. All bytes of it will be set to the value
constant_char.

� Example
{
 unsigned char auc1[10] = “abcdefghi”;

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 36 of: 71

 unsigned long auc2[10] = “ihgfedcba”;
 unsigned long auc3[10];
 unsigned long aul[10];

 auc3 = auc1 >? auc2; // auc3 = “ihgfefghi”
 auc3[0,5] = auc3[0,5] + (‘A’ – ‘a’); // auc3 = “ IHGFEfghi”
 auc1 = rand (“123456789” – ‘1’); // no zero termi nation!!!
 auc1[1,9] = auc1[0,9]; // move all elements one step up

 aul = 0xba; // fill all elements with 0xbababa ba
}

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 37 of: 71

9 Functions

All functions represent UDPs. It is possible to use any desired UDP from within another one.
Nevertheless, only UDPs that do not expect parameters can be started directly (via timeline or direct
execution command), since the start mechanism does not provide parameters.

All normal compiler runs should know built-in functions by reading the symbol table file
symbols.tab already, so you should not try to redefine these functions.

9.1 User Functions

Functions are handled very much like in C. The function definition syntax is the following:

[category] type functionname ((type [&] parametername)*) (compound_statement | ;)

The compound_statement may be any OCL code embedded in braces. It is possible to declare
prototypes of functions by replacing the compound_statement by ; . This is useful if you want to
define functions that call a later defined function: Since at least the function header must be known
when the call is to be compiled, use the prototype definition before. Please note that the function
header of the later function definition must be exactly the same as the prototype declaration.

Recursive function calls are allowed.

Functions may be called by any other OCL function. The functionname is used to specify the
desired function.

9.1.1 Return Value

Unlike C, OCL allows complex return types like structures or unions. If nothing is returned by the
function, you have to specify the return type as void .

Although it is possible to use large complex types as return value you should remember that return
values are stored twice on the local machine stack (created in the local memory of the called
function and copied into the local memory of the calling function). Therefore you should avoid
using large return types. It is not possible to use references as return type.

9.1.2 Parameters

Since there are no pointers in the OSIRIS command language, parameter transfer normally is done
by copying memory into local function memory. This may result in a lack of performance, when
large amounts of memory have to be copied (for example: bitmaps as parameters). To avoid
extensive memory duplication, you may specify parameters as references. As referenced parameters
are not copied into the local memory of the function, all modifications of reference parameters
inside the function will take effect outside also. That means, you can use reference parameters for
the bi-directional transfer of data to functions and back.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 38 of: 71

The declaration of a reference parameter is done by entering the reference operator & behind the type
of the parameter. Please note that accessing reference parameters is slower than non-reference
parameters. You should use reference parameters only for two reasons:

• Modifications of the parameter inside the function has to take effect outside
• The parameter contains a large amount of memory.

Empty brackets mean that there are no parameters transferred to the function.

It is not possible to define functions with a parameter list of a variable length.

It is possible to specify arrays of unknown length as parameter by leaving the square brackets empty
([]). If you do so, you must specify this parameter as a reference (using &). Please note that all
modifications done inside the function will have effect to the array outside the function also.

� Example
void Increment (long& sr)
{
 ++sr; // increment sr.
}

EndianUnion DemoFunction (long l, long& sr)
{
 EndianUnion Result;
 Increment (sr);
 if (l > 0)
 return DemoFunction (l-1, sr); // recursive ca ll

 Result.TwoUnsigned.ul2 = 1234;
 Result.s = sr; // store curren t sr in return value
 sr = sr * 2;
 return Result; // return
}

long Length (unsigned long& uc[]) // allow char-a rrays of any length to be
 // transferred
{
 long l;
 for (l = 0; uc[l] != 0; ++l); // run until th e terminating 0 is found
 return l; // return the l ength. (note: this is not
 // the size of the array)
}

void main ()
{
 EndianUnion VarUnion;
 short s;
 long l;
 unsigned long uc[256];

 l = 3;
 s = 2;
 uc = "Demonstration";
 VarUnion = DemoFunction (l, s); // after this c all, the variables will contain
 // the followin g values:
 // l == 3
 // s == 12
 // VarUnion.s == 6
 // VarUnion.Two Unsigned.ul2 == 1234
 l = Length (uc); // after this c all, l will contain 13
}

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 39 of: 71

9.1.3 Categories

category := critical | safe

Unlike C, functions can be assigned to different categories. Depending on the category, some
features of the functions differ:

• No category specified: Normal behavior, all language features enabled, may call all
functions. Generated token code might use dynamic memory management, array operations
with variable sized ranges are allowed, large local variables will not be stored on the local
stack. Out-of-memory condition might cause abortion of the UDP. Since the token code is
not permanently stored in executable area, calling the UDP might fail if not enough memory
is available to store the token code.

• safe : May call only safe functions, variable sized array ranges can not be used for
calculations or accesses to PM data pool. All local variables will be stored on the local stack
(keep this in mind to prevent exceeding the stack at runtime!), even if the size exceeds the
limit specified by HoldLocalSize: (see 14.1.3). No dynamic memory management is used
at runtime. The token code is stored in executable area permanently, so it can be called even
if no free memory is left.

• critical : May call only safe functions, variable sized array ranges can not be used for
calculations or accesses to PM data pool. Large local variables will not be stored on the local
stack. Out-of-memory condition might inhibit the starting of the UDP, but once it is started,
it is protected against out-of-memory aborts, since dynamic memory management is used
only at starting time. If a critical UDP is aborted, some special actions take place for error
recovery.

9.2 Non-OCL-functions (runtime library)

It is possible to use functions that are not written in OCL: You can use OSIRIS-built-in runtime
library functions. These functions can easily be called from your normal OCL programs.

Please note that the interface between OCL and those external functions cannot provide reliable
error detection and type checking, since the real parameter types of the non-OCL-functions are not
known for sure by the compiler. A wrong declaration of external functions may cause fatal errors up
to program crashes.

Normally, the compiler should know all built-in functions already (from the first compilation run of
init.ocl , which contains the declaration of these functions). You may call any of these functions
like any other (user-defined) function without additional declarations. If you have an existing
symbol table file, you can skip the following section.

9.2.1 Initializing Built-in Runtime Library Functions

This section describes how to initialize the symbol table file with the headers of built-in functions.
You should do this with maximum care, since corrupted symbol table information may lead to

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 40 of: 71

program crashes on DPU. Normally, there should be really no need at all for the user to initialize the
symbol table, so most people may want to continue with the next section now.

If you really have to create a new symbol table, you have to initialize it with the built-in functions,
before you compile UDPs. This initialization can be done very easily:

All you need is a file that contains the interface declarations of all built-in functions in exactly the
same order of their appearance in the DPU's jump table. Make sure that the interface declarations fit
the interface definitions used for the real functions of the DPU, since differences may cause fatal
malfunctions! There is absolutely no automated cross-checking!

The interface declarations for built-in functions looks very much like prototype declarations of user
defined functions (consisting of the return type, the RTL function name and the list of parameters).
The only difference is the keyword extern in front of each declaration, like shown in the following
example:

extern long Check (long lNoOfUnits, long lDelay);

To generate a new symbol table file you only have to delete the previous version of this file (if
present) and call the compiler with the option –mc like this:

ocl –mc init.ocl

The compiler will detect that there is no existing symbol table and will enter the initialization-mode
automatically. The function interface definitions found in the file init.ocl will be processed and
stored inside the new symbol table file.

After this initialization you may use any of the functions declared inside the file init.ocl without
including this file again.

Normally the complete interface to the built-in functions should be provided with the OCL compiler
(for instance inside the file init.ocl). There should be no need for you to change the declarations.

Please note that differences between the OCL-declaration and the real needs of the built-in functions
can cause fatal errors!

Since all built-in functions have to be declared as a whole at the beginning of the symbol table, it is
not allowed to add further 'extern ' functions in later compiler runs. Any use of this keyword in
compiler runs with an existing symbol table file will cause error messages!

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 41 of: 71

10 Special Commands

10.1 Sleep

This command stops the execution for a specified number of milliseconds.

sleep time ;

10.2 Wait

This command will stop the execution until the specified event occurs or the time exceeds the
timeout value. It is not possible to wait concurrently for the same event.

wait ([timeout] , event)

The timeout may be omitted. In this case the machine will never cancel the wait for the specified
event. The command returns a value, which specifies the reason of continuation:

• 0: event occurred
• RC_TIME: timeout occurred
• RC_FAIL: waiting failed, e.g. because other tasks are waiting for the same signal

10.3 Signal

signal event ;

This command will set the specified event.

10.4 Halt

This command stops the execution of the current UDP immediately. To continue execution, the
according command has to be sent to the UDP manager by hand (see IDA-OCL-0003, sections 4.1.8
to 4.1.11).

The halt command is thought to be used for debugging purposes only. It should not be used inside
regular UDP code.

10.5 Start

This command will start execution of the specified UDP within another token interpreter and
continues the execution of the current UDP immediately.

start (UDP_Name)

The start command will only be successful, if the UDP's ID and name at execution time fit the ones
found at compilation time. This behavior should prevent incorrect UDP calls.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 42 of: 71

The return value of the start command indicates the success:

• 0: an interpreter received the start command and will try to execute the UDP
• 1: the UDP does not exist (at least not with the former ID)
• 2: the UDP has been replaced by another one (with different name)
• 3: all interpreters are currently busy (the start command cannot initiate the execution of

UDPs on the preserved virtual machine. Even if this command fails there is one virtual machine
left for ground commands – unless the preserved machine is not busy with another ground
command already)

Any other value than 0 indicates that the start command failed. Please note that this return value
does not contain any information about success of the UDP execution (which probably is not
finished at this time).

10.6 Size Of ...

The command sizeof can be used to derive the size of the memory used by a certain variable or
data type.

sizeof can be used on array parameters of variable sizes. In this case the size of the referenced
array will be derived at runtime.

Normally it is impossible to mix type-name and field-names of a data structure to specify an
element. The only exception is inside the sizeof command: the first part of the specifier may be a
type name, all following may be field specifiers.

� Example
long l;
l = sizeof (PreciseUnion.s); // l = 2 (bytes), the size of the field s of the
 // type PreciseUni on
l = sizeof (BitPreciseUnion.s); // l = 2, the size of the field s of the variable
 // BitPreciseUnion

10.7 Priority switching

The command priority_change (priority) ; can be used to change the priority for the
execution of the calling UDP for a short amount of time. The value of priority can be 0 (higher than
normal), 1 (normal priority) or 2 (lower than normal).

Please note that UDPs can be preferred or deferred relatively to other UDPs. It is not possible to set
the priority of UDPs above other tasks than UDPs (this prevents UDPs to block low-level tasks).

The priority of UDPs is reset to ‘normal’ automatically after a maximum period of 20 seconds after
the last priority_change command.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 43 of: 71

11 Preprocessing

The OCL compiler built-in 'preprocessor' is not really preprocessing the input before compilation. It
is rather a kind of 'text-processing in between': Whenever the parser comes across an unknown
symbol, it activates the preprocessor to replace the symbol, if there is a replacement defined for it.
After replacement, the compilation will continue.

Please note: Although you might define symbols that are already used by the compiler (like OCL
keywords or data types, variables or function names), these replacements will never be used,
because the text-processor will not be activated if the symbol is identified by the parser.

11.1 Comments

Text included in /* */ is ignored. Comments may be nested. If inside a comment a opening /* is
found, the next */ will not end the comment mode.

Text following // is ignored until end of line. It is not possible to open or close a further comment
there!

void main ()
{
 /* this is a comment.
 /* this is a comment inside an other comment. * /
 this is still comment.
 */
 return; // last comment
}

Please note that /* or */ placed after a // are ignored. Therefore the following example would
cause errors:

void main ()
{
 /* this is a comment.
 /* this is the inner comment // and even more c ommented. */
 this is still inner comment!
 */
 now the inner comment is closed, but the outer co mment is still active.
 it is closed here: */
 return;
}

11.2 Include

It is possible to divide the OCL startup-file into several pieces and put them together during
compilation via #include command. Whenever the #include command appears the compiler
switches to the text of the specified file and continues compilation. After compiling the included
file, the compiler switches back and continues compilation of the previous file.

#include < filename >

or

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 44 of: 71

#include " filename "

Any text behind will be ignored until end of line is reached.

11.3 Define

You may define your own keywords by using the #define command

#define keyword text

Whenever the compiler reaches an unknown symbol during compilation, it checks if the symbol is
defined as keyword . If it is found, it will be replaced by text. The keyword remains defined and
may be used as long as the compiler is running or it is undefined by using the preprocessor directive

#undef keyword

Please note that it is not possible yet to define complex macros with parameters.

text may be more than one line. In this case use \ as the last character of the line that is continued in
the next line.

11.4 Ifdef ... else ... endif

An easy way to switch between alternative source codes is using the #ifdef keyword. If the symbol
behind #ifdef is already defined, the compiler compiles the code following directly until the next
#else or #endif command. The code between #else and #endif is ignored. If the symbol is not
defined yet, the code following the #ifdef is ignored and the code between #else and #endif is
compiled instead. The #ifndef command has the opposite behavior.

� Example
#define MSG_INFORMATION 0
// define DEBUGMODE for creating additional debug i nformation
#define DEBUGMODE

...

// if in DEBUGMODE create additional message
#ifdef DEBUGMODE
 _AddMessage (MSG_INFORMATION, "DEBUG", "debug poi nt 1");
#endif

#ifndef DEBUGMODE
 _AddMessage (MSG_INFORMATION, "Info", "debugging mode off");
#else
 _AddMessage (MSG_INFORMATION, "Info", "debugging mode activated");
#endif

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 45 of: 71

12 Compiler Messages

This section offers a short description of the compiler and virtual machine messages in combination
with hints for eliminating the reason for these messages.

We have to differentiate between messages that appear at compile time and messages that appear
during runtime:

• Compile time messages contain the filename and line number of the input that causes the
message. Only a few messages are not associated to line numbers.

• Runtime messages are returned via housekeeping data.

12.1 Warnings

Warnings show potential errors. Since some of these warnings may be caused deliberately, it is
possible to suppress some types of warnings to keep the message list clear (see). You should not
suppress all warnings, since some of them could indicate runtime problems.

Array size unknown - be sure not to exceed it! This means, that you are accessing a
fix element of an array of a variable size. This may cause runtime errors if the accessed element is
outside the array limits.

Assignment in condition : This warning indicates possible accidental use of an assignment (=)
instead of an equality comparison (==) as a condition.

Assignment of different enumeration types : This assignment may lead to a value of the
destination that is out of range.

Assignment to enum - take destination as int : This assignment may lead to a value of
the destination that is out of range.

Cast may truncate significant bits : The operation causes an implicit typecast. The new
type is smaller than the old type, which leads to loss of information. This warning appears for
example at assignments of long to char.

Conversion causes bit loss indicates that you are assigning elements with different sizes.

Conversion of boolean to numeric : You are using a boolean variable or value as a numeric.

Conversion of const unsigned to signed : You are using an unsigned constant value as a
signed value. This warning only appears if the value uses full 32 bit (like 2147483648, which is
0x80000000).

Conversion of negative const to unsigned : This message appears when you are
assigning a negative constant value to an unsigned variable.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 46 of: 71

Conversion of unsigned to signed means, that you are using an unsigned variable as a
signed. This may cause large values to appear as negative. Remember that all string and character
constants are used as (arrays of) unsigned characters.

Different array sizes, taking minimum size : An operation on arrays with different
length occurred. To prevent memory access errors, the operation will stop after the smaller array is
processed completely. Some elements of the larger array will not be processed.

External buffer partly unreachable : You have declared an extern variable that is smaller
than the memory area provided by the hardware driver. That means that you will not be able to
access the complete memory area.

Float truncating to int : The floating-point value is truncated to the lower next integer
value.

Ignoring declaration as unsigned : Floating point variables cannot be declared as
unsigned.

Ignoring incrementation on float : The increment or decrement operators are not defined
on floating point values.

Ineffective code : You add/subtract a constant floating point zero or multiply/divide by a
constant floating point one. This operation may imply a type cast without affecting the value of the
second operand. Maybe this cast is not necessary. This operation primarily is thought to force the
result of QLook Items to be floating point.

Large parameter copying : You are using a large data type as non-reference parameter. This
may be ineffective, because the parameter has to be copied completely, and it may require much
space on the limited local stack.

Low remaining stack : The local memory used by the function is very big. It may cause runtime
errors with recursion or deep call stacks.

Modulo on floats is not defined, truncating : The operation modulo (%) cannot be
used for floating point values. The value is truncated to integer before the operation.

Name conflict on resolving external : You declared a symbol with a name that is also
used as a function in the runtime library. In this case the runtime library function is not accessible.

Non-existing external : The runtime library contains a function that is not declared in the
source code. That means, the function is not accessible for OCLs.

Parameter has no identifier : The parameter of a function has no name and cannot be used
inside the function.

Redefining with different value : You are defining a symbol that is already defined. You
should use #undef before the second definition to suppress this warning.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 47 of: 71

Result is always zero : The calculation is redundant, since its result is a constant zero.

Signed interpreted as unsigned : Negative values may be interpreted as large positive
values.

Source array has a variable size - using size of destination : This assignment
may cause runtime errors if the source is smaller than the destination. You should make sure that the
source array is always larger than the destination.

Stack cannot hold local memory : The currently set stack size is too small to hold all local
memory needed by the compiled function. This will cause runtime errors as soon as the function is
called. You should increase the stack size or decrease the hold-local-limit in the compiler control
panel (the latter takes effect after a new compiler run).

Too many warnings. Suppressing further messages : The currently executed module has
reached the maximum number of warnings. To keep the message file readable, all following
warnings of this module will be suppressed.

Types differ with same size, copying : This warning may appear if you are assigning an
array of unsigned values to an array of signed values. Although the type is changed, the assignment
is done. Remember that there are many cases that result in strange values of the destination variable
(for example: you might be assigning a complex structure to an array of floating point values).

Types do not fix exactly : You are assigning a type to a slightly different data type.

Unknown preprocessor directive : The preprocessor doesn't know the used directive.
Currently you can use #include , #define , #undef , #ifdef , #ifndef , #else and #endif .

Unresolved function : You declared a function to be extern that is not part of the runtime
library, you declared a function to be part of an DLL that is not found or you declared a prototype of
a function without defining the body. Any call of this unresolved function will cause runtime errors.
The name of the function is shown in the warning message.

Unsigned interpreted as signed : An unsigned value is used as signed. This may cause large
values to be interpreted as negative.

Useless operation : You are adding/subtracting a constant zero or you are multiplying/dividing
by a constant one. Since this operation does not affect the result, it will be ignored.

Using enumeration value as integer : This is non-critical, since enumeration values always
are internally represented as long integers.

Using numeric value as boolean : You are using a numeric value instead of a boolean. This
message may indicate accidental use of logical operations instead of bit operations on numeric
values. It may also indicate an erroneous use of a numeric value inside a conditional expression.
Since all non-zero values are interpreted as true, this may cause unexpected results.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 48 of: 71

Using temporary value as referenced parameter : The value of a parameter may change
inside the function, but it will have no effect to outside.

12.2 Errors

In very rare cases (actually there is no known case at present) internal bugs of the compiler may
cause the error messages. If you are sure that your program is correct although there are error
messages, you should take a look inside the next section (Fatal Errors) to find tips to create
workarounds on compiler bugs.

Array limits exceeded : You are trying to access an element with a too high or negative
constant index. This would cause unexpected results at runtime.

Array with unspecified size has to be reference : If you want to use arrays with an
unspecified number of elements as a function parameter, you have to specify it as reference using &.

Assignment to constant : You are trying to assign a value to a constant.

Assignment of different types : You are trying to assign different types. This is only
possible for simple types (bool, char, short, long, double) or types of the same size. Since the type
checking is not based on type names, the message does not show the type names but the top-level
type (a simple type, ARRAY, UNION or STRUCT). Although the top-level type may be equal, the
difference may appear in lower levels.

Cannot assign two arrays of variable size : The sizes of the source and the destination
array are not specified. It is not possible to derive the number of bytes to copy.

Cannot handle this type here : You may be trying to use a simple-type operation on a
complex data structure. The resulting type is set to 'unknown', which may cause following Unknown
Type – errors.

Cannot return a value here : Decoders cannot return a value. Use an empty return instead.

Cannot use references here : References only may be declared as function parameters.

Cannot use variable array size here : You are declaring an array with an unspecified
number of elements in an illegal context. Arrays with an unspecified number of elements are
allowed only as (referenced) parameters of functions or in unions with at least one element of
known size.

Changing preprocessor symbols : You are using #define or #undef directives inside a
QLook expression. This is not allowed, since the compilation order of expressions at startup is not
defined.

Constant expected : You cannot use a variable here.

Declaration does not fit prototype : The function header differs from the prototype
header specified before.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 49 of: 71

Division by zero : Since the division by zero is not defined, this operation is ignored.

External buffer too small : A external variable is larger than the memory area with the same
name provided by the hardware driver.

File not found : The specified file does not exist.

Global vars not allowed : OCL prohibits the declaration of global variables, since this would
cause complex timing behavior in combination with multiple parallel accesses.

Illegal character : You are using a character that is not allowed here.

Illegal implicit cast on reference : The type of the parameter differs from the function
declaration. Since a typecast is not possible on references, the parameter cannot be used. Please note
that parameters (like all internal variables) are stored in Intel format.

Illegal local use of keyword : You are using a keyword in a forbidden context.

Illegal use : You are using a non-function symbol as a function call.

Illegal use of global variable : Global variables cannot be initialized.

Leaving safe path : A function call from a critical or safe function to a non-safe function
has been detected. Since only functions of category safe are protected against out-of-memory
conditions even at start-up, it is not allowed to call functions of other categories if the calling
function is specified to be protected against out-of-memory failures.

lValue expected : You are trying to use a constant as a parameter that is a reference (declared
with &) or you are trying to assign a value to a constant. Use a non-constant variable instead.

Modules must return a value : explicit triggered QLook-interface modules have to return a
value.

Modulo on float undefined : The modulo-operation cannot be used on floating point
variables.

No fitting loop : You are using a cont or break statement outside a loop.

Not in global scope : The use of some keywords (like extern and dll) is forbidden in local
scopes. Please note that all QLook-items as well as batch files are completely embedded by a local
scope.

Not in single expression mode : Probably you have not specified a function header before
the braces { } . Since this is the syntax of the automatically triggered QLook Items, it causes an
error if used elsewhere.

Only the first dimension of an array may be variable : You are trying to declare an
multidimensional array with an unspecified number of elements in any other than the first
dimension.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 50 of: 71

Out of memory : This is a runtime error of the virtual machine. The execution of the code will be
aborted immediately.

Parse error : The parser cannot find a fitting grammar rule.

Positive constant value expected : Probably you are using a negative value or a variable.

Preprocessor stack exceeded : You are including too deeply nested files, or you are using too
deep nested symbols. Perhaps you are recursively including a file or defining a symbol.

Pure virtual function called : You are calling an external function that is not linked. Check
for 'Unresolved external '-warnings and eliminate it.

Returning different types : The type of the symbol that you want to return differs from the
declared return type of the function.

Size exceeded : You are trying to specify a bit-size of a type that is larger than the internal size of
this type.

Stack overflow : The stack is too small to hold all local data needed by the virtual machine.
Increase the stack size that is shown in the compiler control panel (this takes effect immediately) or
decrease the size limit of local hold symbols (this takes effect after a recompile).

Symbol already declared : There is a symbol with the same name already declared inside the
same scope. Remember that it is not possible to use the same name for a variable and a type at once.

Symbol is not a member : The structure or union does not contain the specified element.
Remember that the compiler is case sensitive.

Syntax error : See explanation in the message itself. If there is no explanation, see the following
messages for further information.

Too few parameters : The function call has fewer parameters than the function declaration.

Too many errors - aborting : The maximum number of errors is reached and the current
(compiler- or virtual machine-) execution is aborted. The code will not be executed any more. This
number can be adjusted in the compiler control panel at runtime. If you increase the maximum
number of errors at runtime, code that already had reached the former maximum number of errors
can be revived – until the new number of errors is reached again.

Too many parameters : The function call has more parameters than the function declaration.

Too many single expressions : The source contains more than one QLook Item function.

Undeclared symbol : You are using a symbol that is not declared yet. Place the symbol
declaration before the first use. Remember that the compiler is case sensitive. Maybe you are using
a formerly known preprocessor symbol that is not longer defined (perhaps you deleted the symbol
using the compiler control panel?).

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 51 of: 71

Unexpected end of file : Probably there is a comment not closed.

Unknown Type - ignoring operation : This is an aftereffect in most cases.

Unresolved external variable : The specified variable name is not provided by any hardware
driver for access to mapped memory.

Use does not fit declaration : You are using a parameter of a different type as specified in
the declaration of the function.

Use of 'extern' not allowed here : Only runtime-library functions may be declared as
external.

12.3 Fatal Errors

These messages indicate internal compiler errors that are not caused by the user. Nevertheless they
may be caused by the error handling of the compiler (aftereffect of a user error). This means that the
fatal errors should disappear in most cases, if the user program is corrected.

If you get a fatal runtime error by the machine, this possibly indicates that the machine itself or the
compiler is defective.

Although bugs of the compiler or virtual machine cause fatal errors, it may be possible to find
workarounds by changing the user program. For this reason, you will find some hints on effective
changing your program. In some cases it also may be helpful to force the creation of internal help
variables by adding useless calculations like (...+1-1). Sometimes it is possible to find a
workaround by inserting a ‘senseless’ statement (like 1;) before (or even inside) the part of your
program that causes the error.

Cast error : The compiler cannot perform an implicit cast. This is definitively a bug inside the
compiler and should not occur. Perhaps you can create a workaround by using local variables for
provisional results. Possibly it would help to use explicit typecasts.

JumpStack corrupted : The internal table of jump-addresses for loops or conditional expressions
(like if...else, switch...) is corrupted. As a workaround you may try to eliminate some complex loops
or conditional expressions.

Memory error : The managing of local help variables detected a malfunction. As a workaround
you may try to eliminate implicit help variables by using local user-defined variables (instead of
a[b*c]... try d = b*c; a[d]...).

Not implemented : At compile-time, this message indicates that you are using a rule of the OCL
grammar that is not implemented yet. Your source probably will be correct in a future version, but
you have to reword the statement if you want it to get compiled now (for example: Use if ... else
... instead of ... ? ... : ...). If this error occurs at runtime, it may indicate that your program contains
illegal memory write commands that destroy the code. The compiler or the virtual machine should

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 52 of: 71

detect almost all cases of illegal memory accesses, but possibly you found a technique to avoid this
detection.

Stack corrupted : Runtime error. The code generated by the compiler has incorrect stack
handling. As a workaround you may try to eliminate some function calls.

Strange : This internal error is really strange.

Symboltable inconsistency : The symbol table does not contain the expected information.

Type not implemented here : If there are no preceding errors, this message indicates a bug
inside the compiler. Otherwise this message may result from former 'unknown symbol'-errors.

Value can't have an address : Definitely a compiler bug – without any known workaround.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 53 of: 71

13 List of Keywords

The following list contains the keywords of OCL that may not be used as variable or function
names:

abs, acos, asin, atan, at
bool, break
case, const, continue, cos, critical
default, do, double
else, enum, exp, extern
false, fixed, for
if, int
ln, log, long
random, return
safe, seed, signed, sin, sizeof, signal, sleep, static, struct, switch
tan, true, typedef
union, unsigned
void
wait, while

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 54 of: 71

14 OCL Compiler & UDP Manager

The OCL Compiler contains the ground part of the UDP manager. It generates files that can be
uploaded directly to DPU via service 6.

All functions (UDPs) that are declared once will remain declared in all later compiler runs as long
as they are not removed explicitly from the symbol table. Opposite to that, declarations of data types
are not stored for later compiler runs. That means, you should store all commonly used data type
declarations in one file that can be included by all source files that make use of these types.

14.1 Configuration

Configuration of the OCL compiler is done using a special file. The default name of this
configuration file is OCL.ini (inside the current directory). The name of this file can be altered by
using the command line parameter –cfg filename as first parameter or by setting the environment
variable OCLCONFIG to the desired name and path.

If OCL does not find the specified configuration file it will create it (filled with default values). If
you already have this file with only some options missing, you can call OCL with the parameter
–write.ini to add all missing options with their default values.

14.1.1 Search Path for Including Files

The directories to be searched for files that should be included (#include) can be specified with
the keyword SearchPath: . Particular directories have to be separated by ; (semicolon). The
search path should (at least) contain the current directory . (dot).

The search path can also be specified by using the environment variable OCLSEARCHPATH. The
value of this variable is appended to the string specified inside the configuration file.

14.1.2 Aborting After a Couple of Errors

The option MaxErrors: inside the OCL.ini file allows to specify the number of compile errors that
may occur before aborting the compilation. Please note that the resulting number of error messages
will be value+2 (since value+1 is the first message exceeding the limit and value+2 is the too
many errors message). The default is MaxErrors: 7 .

14.1.3 Hold Local up to Size

To allow the use of large local variables in combination with a strictly limited stack size, the
compiler stores variables that exceed the size specified with the keyword HoldLocalSize: in
dynamically allocated memory.

Variables that are smaller than the specified size are stored on the local stack, variables larger than
the specified size are stored outside the local stack automatically. The syntax of accesses to non-
local variables is exactly the same as of accesses to local variables.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 55 of: 71

Accesses to variables on the local stack are faster than accesses to dynamically stored variables.
Setting the limit too low will cause loss of performance while setting the limit to high may result in
stack overflow errors. The default value is HoldLocalSize: 8 .

14.1.4 Warning Message Suppression

Generation of warning messages (see 12.1) can be suppressed via OCL.ini like follows:

Warnings: (↵↵↵↵ ((+ | -) WarningText ↵↵↵↵)*)

WarningText is the message text, - deactivates the warning. All entries of this list have to stand in
a new line. After the first run of the OCL compiler, OCL.ini contains a complete list of all
warnings.

14.1.5 Debug Information

The OCL compiler can store additional debug information into a file. Which information is to be
stored can be specified in the OCL.ini file using the following keywords:

• Debug: (yes | no) generate file or do not generate debug file at all

• ShowCode: (yes | no) show the generated token code

• ShowFirstPass: (no | yes) show the code even of the first pass (ShowCode: has
to be set to yes in this case)

• ShowSymbols: (no | yes) show the symbol table

• ShowTemp: (no | yes) show allocation of internal variables for temporary results

Normally, only the first two options should be set to yes. The other three options are more useful for
internal compiler debugging. The name of the file can be specified inside the OCL.ini using the
keyword DebugFile: . The default name is OCLdebug.txt . Normal compiler runs append their
data to this file, only the initial compiler run (without an existing symbol table file) will replace an
existing debug file.

14.1.6 Command File

The filename of the command sequence generated by the OCL compiler can be specified using the
keyword CommandFile: .

The default filename is command.bin . You may use the wildcard * inside this specification. This
causes the compiler to replace this character by a generated text depending on its current action and
take the resulting string as output filename. Please note that some special characters may be
replaced by underscore (_) for file name creation.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 56 of: 71

14.1.7 Symbol Table File

The name of the file containing the symbol table (see 14.6.2) is specified using the keyword
SymbolFile: . If the OCL compiler does not find that file, it assumes to be called the first time and
enters the initialization mode. The default file name is OCLsym.txt .

14.1.8 Log File

The keyword LogFile: specified the name of the file that contains all logging information. All
compiler runs append their output to the existing file.

14.1.9 Compression Table

The compiler uses a user-defined compression table, if the filename is specified behind the keyword
CompressionTable: . If this keyword is not specified, the built-in table is used to generate
compressed token code.

For further information about the compression and the format of user defined compression tables
see document IDA-OCL-0004.

14.1.10 Preserving UDP-IDs

You can make sure that certain UDPs get certain IDs:

PreservedIDs: (↵↵↵↵ (ID UDP-Name ↵↵↵↵)*)

The ID has to be larger than the number of built-in functions. It is not possible to preserve IDs that
are already used by other UDPs.

14.2 Compilation and Handling of UDPs

The OCL compiler should be used to compile UDP source code to token code as well as to generate
commands for upload and deletion of UDPs and for job control.

14.2.1 Initialization

If no existing symbol table file is found, the compiler enters the initialization mode automatically.
Only in this mode it is allowed to specify "external" functions. Since these functions are built-in to
DPU, external declarations only affect the ground based symbol table. It is important to use the
correct declaration order at this point, because all calls to functions are handled using their IDs that
depend on the declaration order.

If a symbol table file (see 14.6.2) is found, it is not allowed to declare any other function to be
extern any more.

The compiler run for initialization looks like any other call for compilation of multiple UDPs, but
the source file should only contain all declarations of external functions. The declared functions will

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 57 of: 71

remain declared in all later compiler runs, as long as they are not deleted explicitly from the symbol
table file.

ocl –mc declarationsFile

The declarationsFile could be named init.ocl , for example.

If you use the wildcard * inside the command file name, it will be replaced by the name of the
declarationsFile (without the extension, e.g.: init.ocl will result in init).

14.2.2 Compiling a UDP for Execution on Startup

To generate a UDP which is executed automatically on startup of the OCL space segment, no
special compiler option is needed. The UDP Manager initiates the execution of the POP with the
lowest possible ID, if it is named AutoStart (case sensitive) and does neither expect parameters
nor returns any value. So, to create this startup-UDP, the following procedure should be used:

1. Initialize the ground symbol table (see 14.2.1, ocl –mc declarationsFile)
2. Optional (but recommended): determine the first unused ID from the generated ground

symbol table file and preserve this ID for the UDP AutoStart (see 14.1.10). For the DPU
Software version 7.03 the ID of AutoStart has to be 99.

3. Compile the file containing the UDP AutoStart (see 14.2.3). If you left out step 2,
AutoStart must be declared as first UDP inside of this file (void AutoStart () ;).
Please be aware that AutoStart cannot access any POP before it has been loaded explicitly
by calling the appropriate RTL function (LoadPOP). Only RTL functions are available
immediately.

4. Send the token code to the UDP Manager.
5. Save (at least) the UDP AutoStart into NVRAM (see 14.3.1).

That’s all. Step 2 is recommended, because it allows easier deletion and replacement of the
AutoStart UDP. Please be aware that saving POPs destroys existing POPs with higher IDs. That
means, re-saving only an updated AutoStart to NVRAM may invalidate the following UDP
library.

14.2.3 Compiling Multiple UDPs at Once

14.2.3.1 Input From File

Sometimes it may be useful to create multiple UDPs at once. To do this, you can create a file
containing all desired UDPs (functions) and compile it using the option –mc (multiple compile). On
success, the compiler generates the code for upload to S/C and appends it to the file command.oct .
Additionally, all defined functions will be added to the symbol table file symbols.tab for use in
later compiler runs. Of course it is allowed to include other files and define own data types.

The compiler call is as follows:

ocl –mc sourceFile

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 58 of: 71

Normally, the sourceFile should have the filename extension .ocl .

Of course, this can be used even to compile files that contain only a single UDP.

If you use the wildcard * inside the command file name, it will be replaced by the name of the
sourceFile (without the extension).

14.2.3.2 The generated UDP token code is compressed. If you want to generate uncompressed
UDP token code, you should use -mcu instead of –mc.Input From Standard Input

It is even possible to compile input from the standard input device.

ocl –stdin can be used if the output file name specified in ocl.ini contains no wildcards,
otherwise you have to specify the name of the output file explicitely:

ocl –stdin outputFileName

The input will be piped into a temporary file. Compilation will start not before the standard input
reaches EOF.

14.2.4 Compiling One UDP for Execution at Certain Time(s)

This is done by using the option –tc (time line compile).

The command ocl –tc "code" (time)* can be used to generate a UDP that should be started at the
given time(s). Afterwards, the UDP will be removed automatically from DPU memory. The "code"
must not have the normal function header (return type, title and parameters) and should not return
any value. It is supposed to contain only one or a few calls to more complex UDPs.

time is specified in seconds and corresponds to the time of the DPU. You may specify fractions up
to milliseconds.

The generated UDP will get a name consisting of the UDP ID and the first few characters of the
source code. The name will be displayed on success. On upload, the UDP will be automatically
inserted to the timeline for execution at all specified times. The UDP will be executed as often as
times are listed. After that, the UDP is deleted automatically from DPU memory.

If you use the wildcard * inside the command file name, it will be replaced by the generated name
of the UDP followed by the keyword Time .

14.2.4.1 Example

Assume that slot 9 is the first free UDP slot.
ocl –tc "sleep (10)" 123.456 234.567

This line will create a UDP named 009:sleep_(10) that is stored in the file
009_sleep__10_Time.bin . The UDP will be executed two times (at 123.456sec and 234.567sec)
and deleted afterwards.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 59 of: 71

14.2.5 Compiling One UDP for Immediate Execution

Using the option –xc , (execution compile) the compiler will generate code for a UDP that will be
executed directly after upload and it will be removed after execution. The calling syntax is the
following:

ocl –xc "code"

"code" must not have the normal function header (return type, title and parameters) and should not
return any value. It is supposed to contain only one or a few calls to more complex UDPs. The
generated UDP will get a name consisting of the UDP ID and the first few characters of code. The
name will be displayed on success.

If you specified a command file name with a wildcard, asterisk is replaced by the generated UDP
name followed by Exec .

14.2.6 Replace an Existing UDP

If you want to replace the code of an existing UDP by another, you should use the option

-rc UDP-name UDP-file

UDP-name specifies the UDP that has to be replaced, UDP-file is the name of the file containing
the new source code of the UDP. The interface of the UDP (name, return type and parameters) has
to remain exactly the same as before.

Uploading the replacement code does not change time line entries. Replacing UDPs is possible only
if the affected UDP is not currently running, so the UDP manager will wait a couple of seconds for
the UDP to finish (if necessary). During this time, calls to this UDP will fail. Afterwards, all calls to
the replaced UDP are handled like before.

If you specified a command file name with a wildcard, asterisk is replaced by the generated UDP
name followed by Replace .

Please note that the replacement command is generated for a specific timestamp. It cannot be used
to replace any other version of the same UDP with a different timestamp. This should prevent
mistakenly replacement of UDP versions.

14.2.7 Execute a Certain UDP

You may initiate the execution of an existing UDP that does not need any parameters by using the
option –run .

ocl -run UDP-name generates a command that starts the execution of the named UDP directly
after upload. Of course, the mentioned UDP has to be present at the DPU's memory already.

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Run.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 60 of: 71

By default the OCL system uses up to 10 different virtual machines for UDP execution. For
emergency handling a preserved 11th machine is available for ground commands only (the OCL
start command (10.5) will never initiate the execution of UDPs on this machine). A UDP
manager command to use the preserved machine for the execution of a specified UDP will be
generated by the OCL compiler when invoked with the following command line:

ocl -masterrun UDP-name

The command will try to initiate the execution of UDP-name on the preserved machine. If this
machine is not available, the UDP manager will send the command to the standard machines.

14.2.8 Remove a Certain UDP

Sometimes you may want to remove a UDP from DPU by using the option -del UDP-name. This
generates a command sequence that causes the DPU UDP-manager to delete the UDP specified by
UDP-name and remove all associated entries in the time line. Please note that only UDPs that are
not currently running can be deleted. Nevertheless, the UDP manager will wait a couple of seconds
for the affected UDP to finish.

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Del .

Please note that the generated command sequence can only be used to delete the UDP with the
timestamp found in the symbol table at generation time. The deletion will fail if the timestamp
differs. This should prevent mistakenly deletions caused by unintentional later repetition of the
command sequence (which could affect a different UDP with coincidental the same ID). If deletion
fails, you will get a message containing the on-board timestamp of the UDP. If you are sure about
what you are doing, you can correct the ground based symbol table's UDP timestamp (see 14.6.2)
and generate a new deletion command sequence.

14.3 POP Handling

POPs are UDPs that are stored in the DPU's NVRAM. You can easily create POPs from any UDP in
DPU memory. POPs are useful to avoid wasting transmission time for uploading large amounts of
UDP data to DPU from earth after a reset.

14.3.1 Save UDP to NVRAM

It is possible to save UDPs in sequential order to NVRAM. You can generate the corresponding
command using the OCL compiler with the option –save followed by one or two parameters:

• ocl –save all saves all UDPs at once to NVRAM. Existing POPs will be overwritten in
NVRAM. Behind the last written UDP an EOF marker will be written to indicate the end of the
used NVRAM area (useful for later POP operations). POPs behind the EOF marker will not be
accessible any more.

• ocl –save UDP-ID saves only the specified UDP to NVRAM. A possibly existing POP with
the same ID will be lost, existing POPs with a higher ID may be overwritten. This command

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 61 of: 71

does not write an EOF marker, so POPs with higher ID remain accessible (unless they have been
overwritten by the new POP).

• ocl –save first-ID last-ID saves all UDPs from first-ID up to last-ID to NVRAM. All POPs
with an ID from first-ID up to last-ID will be lost, POPs with a higher ID may be overwritten.
An EOF marker is written only if last-ID exceeds the highest ID of currently available UDPs. In
that case, all previously existing POPs from first-ID on will be made unusable.

Please note that the UDPs are stored with the current values of its static variables.

If you replace an existing POP with a larger version, following POPs may be partially overwritten.
That means, you will not be able to restore the overwritten POP from NVRAM and probably you
will receive error messages during POP state checking or POP loading. Nevertheless, all untouched
POPs behind will remain usable, and the (partially) destroyed POPs cannot corrupt the on-board
symbol table or virtual machines.

If you specified a command file name with a wildcard, asterisk is replaced by SavePOPs,
SavePOP_UDP-ID or SavePOP_first-ID - Last-ID (depending on the used option).

14.3.2 Load POP from NVRAM

UDPs stored in NVRAM can be restored into DPU memory. The appropriate command can be
generated with the OCL compiler:

• ocl –load all reads all POPs from NVRAM. POPs that are already present as UDPs in DPU
RAM remain untouched. If you want to restore all saved POPs you should make sure that all IDs
of the saved POPs are currently unused. This option may be especially useful after a UDP
manager reset.

• ocl –load POP-ID reads the specified POP from NVRAM into DPU RAM. A possibly
existing former UDP with the same ID will be lost. If the interface of the existing UDP differs
from the POP's interface, the UDP remains untouched and the load fails.

• ocl –load UDP-name replaces the existing UDP with its pendant from NVRAM, if the
interface matches.

Please note that restoring POPs from NVRAM may cause inconsistencies between the DPU-based
symbol table and the ground-based table. Note also that loading from NVRAM will restore the
states of all static variables of the restored POP to their values at saving time. If you want to restore
the initial values you have to save the UDP before its first execution.

If you specified a command file name with a wildcard, asterisk is replaced by LoadPOPs,
LoadPOP_POP-ID or LoadPOP_UDP-name (depending on the used option).

14.3.3 Check POPs in NVRAM

The current state of the NVRAM can be checked by using

ocl –POPstate

The resulting command causes the UDP manager to return a table of contents of the NVRAM. The
integrity of each found POP is checked by a checksum.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 62 of: 71

14.4 Job Control for Debugging

The OCL compiler can be used to generate job controlling command sequences. Please note that all
following job control commands affects all token interpreters currently executing the mentioned
UDP as top-level UDP. You cannot control a certain token interpreter. (This should be not real
problem, since in most cases all interpreters execute a unique top-level UDP.)

14.4.1 Pause a Certain UDP

For debugging purposes it is possible to pause the execution of a certain top level UDP by using the
option -stop UDP-name. The generated command will stop the execution of the specified UDP.
Please note that all currently running instances of UDP-name will be stopped. Please note also that
only top level UDPs can be stopped explicitly, but UDPs that are called by a stopped UDP will stop
also.

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Stop .

14.4.2 Resume a Certain UDP

After stopping a UDP, you probably may want to resume the execution of this UDP. Therefor you
can use the option -cont UDP-name. This command will cause the UDP to return to normal
execution mode. Please note that all current instances of UDP-name will be resumed. Please note
also that only top level UDPs can be resumed explicitly, but UDPs that are called by a stopped UDP
will be continued also.

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Cont .

14.4.3 Execute a Single Command of a Certain UDP

If you want to execute the UDP step by step, you can initiate the execution of the next OSIRIS
command token by using the option -step UDP-name. Please note that stepping a UDP that is
currently executed by more than one interpreter will cause unpredictable effects.

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Step .

14.4.4 Quit a Certain UDP

If you want to abort the execution of a certain top level UDP, you should use the option -quit
UDP-name to generate the appropriate command. Please note that the generated command will
abort the executions of all instances of UDP-name.

Quit will do a soft abort of the UDP on the next token fetch. That means, called external or system
functions (like sleep) will not be interrupted. Possibly called sub-UDPs will be left directly via the
normal returning mechanism and clean up properly.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 63 of: 71

If you specified a command file name with a wildcard, asterisk is replaced by the UDP name
followed by Quit .

14.5 Customize DPU-Based UDP Manager and Token Interpreter

Commands for customization of the DPU-based part of UDP manager and token interpreter can be
generated easily using the OCL compiler.

14.5.1 Set UDP Interpreter Options

It is possible to change some internal settings of the OSIRIS command token interpreter using the
option -set stackSize errorNumber tableSize timeLineSize timeTolerance verbosityLevel
msgPerSec PMsize. It is possible to use “-1” (minus one) for elements which should not be altered.

Please note that the OCL timeline is probably deactivated in the flight-software. In this case, the
values of timeLineSize and timeTolerance are ignored, but have to be specified; the confirmation
message contains 0 for these parameters, anyway.

14.5.1.1 stackSize

This is the size (in long) that is used for the local stack of the token interpreter. Since each instance
of the interpreter has its own local stack, the stack should not be too large. The stack is used to store
user-defined variables, parameters, local data of functions and so on.

A small stack is enough if you do not need much local memory or a large function call stack. If you
need large amounts of local memory and use deep recursions, you should increase the stack size.

All instances of the token interpreter use the same stack size.

14.5.1.2 errorNumber

This value specifies the number of runtimes errors that have to appear to abort the current code
execution. The machine will continue execution although there might be runtime errors, as long as
this number is not reached. The value 0 (zero) means, that there is no limit for runtime errors. If a
interpreter has reached the maximum number of runtime errors, the interpreter will quit the
execution of the current UDP.

A small group of runtime errors causes immediate aborts, independent of the value set here. A
runtime error of this type is a stack overflow.

14.5.1.3 tableSize

This value specifies the number of UDPs that can be hold simultaneously in the DPU's symbol
table. If you specify a value that is larger than the currently set size, the DPU's symbol table will be
enlarged. If the number is smaller, the table will be shrinked. Please note that the number has to be
greater or equal to the maximum UDP ID currently uploaded.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 64 of: 71

14.5.1.4 timeLineSize

This specifies the number of time line entries that can be hold at once. You cannot shrink the time
line to a size smaller than the current number of used entries.

The built-in OCL timeline feature will probably be deactivated in the flight software, so the
specified value is ignored.

14.5.1.5 timeTolerance

This specifies the maximum allowed belatedness of time line started UDPs. Time line entries that
lay further in the past than timeTolerance milliseconds are treated as outdated and removed from
time line without execution.

The built-in OCL timeline feature will probably be deactivated in the flight software, so the
specified value is ignored.

14.5.1.6 verbosityLevel

The number of TM messages generated by the token interpreter and UDP manager can be changed
by increasing or decreasing the verbosity:

• 0 means no messages at all
• 1 only error messages
• 5 start, stop, reset will be messaged as well as single UDP load, delete or save and normal

POP info
• 10 show nearly all (at the moment there are no messages which are suppressed in this

verbosity level)
• 15 show all

14.5.1.7 msgPerSec

This value specifies the maximum number of TM messages per second generated by the OCL
system. If more messages are produced in one second, OCL pauses to prevent TM buffer overflows.

14.5.1.8 PMsize

This value specifies the number of long (32 bits) values to be reserved for the PM global variable
pool.

14.5.2 Reset UDP Manager

The option -reset UDP manager The OCL compiler may be used to generate a command
sequence that causes the UDP manager on the DPU to do a full reset by. That means, all UDPs are
stopped and deleted from DPU memory, and all settings are set to their defaults. UDPs that cannot
be quitted in a couple of seconds can not be deleted. In this case, the reset will not be done
completely.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 65 of: 71

14.5.3 Compiler options

This section contains some options that affect the compiler behavior only.

14.5.3.1 Create list of all preserved IDs

The option –list filename causes the compiler to write a list of all preserved IDs with
corresponding names and parameter sizes into the file filename.

14.5.3.2 Complete .ini-file

The option –write.ini causes the compiler to replace the current .ini-file by a completed version.

14.5.3.3 Configuration file

The option –cfg filename as first option of the OCL compiler can be used to specify a certain .ini-
file. It may be followed by any other option described in this section.

14.5.3.4 Include files

The option –include filename (+ filename)* as first option or directly after the configuration file
option (see 14.5.3.3) specifies files that are to be included for the compilation. This option can be
used in combination with –xc and –tc , where preprocessor directives won’t work.

14.6 Outputs

14.6.1 Command Sequence File

All command sequences generated by the OCL compiler are saved to file. This file can be uploaded
to DPU. The name of this file can be specified inside the OCL.ini file using the keyword
CommandFile: (see 14.1.6).

14.6.1.1 Examples

CommandFile: code.bin

This line will cause each compiler run to append the generated data to the file named code.bin .
This file should be deleted after successful upload.

CommandFile: *.bin

The compiler will generate a filename consisting of a string depending on the call parameters and
the extension .bin . Compilation of the file StandardUDPs.ocl would result in the file
StandardUDPs.bin .
Please note that the generated code will replace an existing file with the same name, if you use the
wildcard option for the command file name.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 66 of: 71

14.6.2 Symbol Table Logfile

The symbol table file contains the interface of all UDPs that are present on DPU. Data types are not
stored and have to be defined separately. The UDP interfaces are stored in the following format:

UDP := ID [Fc | Fs | F] name timestamp externflag [return] (parameters)

The code Fc specifies a critical function and Fs specifies a safe function, while F just specifies a
normal function.

ID := 8 digits hex value

name := up to 64 characters

timestamp := 8 digits hex value

externflag := (- | &) (&: is extern, - : is not extern)

return := symbol

parameters := (symbol)*

symbol := A info elements (symbol) (array of symbols)

 | S info size ((symbol)*) (structure of symbols)

 | U info size ((symbol)*) (union of symbols)

 | (B | N | I | R) info (simple symbol)

 | V (void symbol)

The characters A, S, U, B, N, I , R and V specify the type of the symbol: Array, Structure, Union,
Boolean, Natural (unsigned integer) value, I nteger value, Real (floating point) value and Void. The
flag & specifies reference parameters.

info := offset reference externflag

offset := 8 digits hex value (offset of the data inside the memory)

reference := 8 digits hex value (offset of the pointer inside memory)

elements := 8 digits hex value (number of elements of arrays)

size := 8 digits hex value (size in memory units)

The symbol table log file is read before each UDP manipulation. Its contents should correspond to
the information held in the DPU part of the UDP manager. If there is a difference between the
ground symbol table and the DPU table, this can have two reasons:

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 67 of: 71

1. Not all generated command sequences have been uploaded to DPU (due to not sending or
upload error)

2. A malfunction of the UDP manager or memory hazard

To prevent malfunctioning of UDPs you should check the consistency of both tables once in a while
(dump the DPU's table and compare it with this file).

The name of the symbol table file can be specified inside the OCL.ini file using the keyword
SymbolFile: (see 14.1.7). The default file name is OCLsym.txt .

14.6.3 Command Sequence Information Logging

For archiving purposes, all successful generated UDPs are logged. The logging information consists
of the UDP's source code followed by the ID and timestamp of the generated UDP. The source code
inside the log file is preprocessed, all #include s are inserted and uses of symbols that are defined
by #define are replaced already. Source code taken from this log file can be used as input for the
OCL-compiler without modifications. Each logging is finished by a final message containing the
name of the generated file and the generation time.

The name of the log file is set to OCLlog.txt by default and can be changed using the keyword
LogFile: inside the configuration file OCL.ini .

14.6.3.1 Example

Let's assume, you run the OCL compiler three times with the following commands:
ocl –mc Init.ocl
ocl –xc "return true"
ocl –rc NEGATE correction.ocl

After these calls, the log file may look like this (without the explanations, of course):
long NEGATE (long lIn)
{
 return ~lIn;
}

It starts with the source code of the generated UDP,
#ifdef SHOWGENERATEDCOMMENTS
//=== ============================
// UDP information
// ID timestamp name
// 008 0x3b04db18 NEGATE
//=== ============================
#endif

followed directly by some information to the generated UDP: The ID of UDP NEGATE is 008 and
it's timestamp is 0x3b04db18 .

The #ifdef / #endif is used for eliminating this automatically generated information, if code from
the log file is recompiled.

 in: Init.ocl
 out: Init.bin (new)

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 68 of: 71

 logging closed on Fri May 18 08:19:36 2001

These lines mark the end of a compilation run. The original input file was named Init.ocl , the
generated UDPs has been stored inside the command file Init.bin . The (new) means, that no
previous data is stored inside the command file. If you do not use a wildcard * inside the name of
the output file given inside ocl.ini, all commands will be appended to this file. In this case, you
would get the message (add) instead. At last, the generation time is logged.

exec{
return true
;}

This is the source code of the compiler run for direct execution. The exec{ } is generated
automatically due to compiler needs. It is followed by the UDP information.

#ifdef SHOWGENERATEDCOMMENTS
//=== ============================
// UDP information
// ID timestamp name
// 009 0x3b04dc9c 009:return_true
//=== ============================
#endif

Of course, even this OCL-compiler run generates a final message:

 out: 009_return_trueExec.bin (new)
 logging closed on Fri May 18 13:28:13 2001

The in: line is missing, because there has been no input file, but only direct input. The third call of
the OCL compiler replaces the former version of UDP NEGATE. Of course, the former version will
remain inside the log file in addition to the new one:

long NEGATE (long lIn)
{
 return –lIn;
}
#ifdef SHOWGENERATEDCOMMENTS
//=== ============================
// UDP information
// ID timestamp name
// 008 0x3b04dcad NEGATE
//=== ============================
#endif

(As described above)

 former timestamp of UDP: 0x3b04db18
 out: NEGATEReplace.bin (new)
 logging closed on Fri May 18 13:31:57 2001

The first line of the final message mentions the timestamp of the former version that will be
removed from DPU memory.

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 69 of: 71

15 Index

#define See preprocessor (define)
#ifdef See preprocessor (conditional compilation)
#include See preprocessor (include)
#undef See preprocessor (define)

A

arithmetical operations See operations (arithmetical)
array

operations .. 35
ranges .. 25
unknown length ... 21, 38

assignment See operations (assignment)
different types ... 15

AutoStart See startup procedure

B

bool .. See data types (simple)
break .. 12, 13

C

case .. 12
Category ... 39

critical ... 39
safe .. 39

commenting See preprocessor (commenting)
compiler

from stdin .. 58
immediate execution ... 59
initialization See symbol table (initialization)
multiple UDPs at once .. 57
timeline .. See timeline

configuration .. 54
const .. See data types (constant)
constant values ... 28

arrays ... 29
character .. 28
complex structures .. 29
non-ASCII characters .. 28
string ... 29
structures ... 29
unions .. 30

continue ... 13
critical ...See Category (critical)

D

data types
array .. 16, 21
constant ... 18, 23
conversion ... 15, 26
enumeration ... 16
simple .. 15

structure ... 17, 24
union.. 17, 24
user defined ... 16

debugging ... 41
decimal numbers .. 10
default .. 12
do while .. See loops (do while)
double ..See data types (simple)
dual numbers .. 10

E

enum See data types (enumeration)
error

handling at compile time 54
handling at execution time 63
message ... 48

F

fatal error
message ... 51
workaround See tips (compiler bug workaround)

files
command output .. 55, 65
log file ... 56, 67
symbol table .. 56, 66

fixed ... See variables (global)
for... ... See loops (for)
forward declaration

data structures.. 15
functions See function (prototype declaration)

function .. 37
definition ... 37
parameter ... See parameter
prototype declaration ... 37
recursive call ... 37
return ... 37

G

goto .. 11

H

hexadecimal numbers ... 10

I

if then else .. 11
include file See preprocessor (include)
initialization See symbol table (initialization)

L

logarithm See operations (logarithm)
logical operations See operations (logical)
long ..See data types (simple)
loops

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 70 of: 71

do while ... 13
for... ... 13
while .. 13

M

memory management ... 54
message .. 45
modulo See operations (modulo)

N

NVRAM
load POP from .. 61, 62
save UDP to .. 61

O

OCL.ini ... See configuration
octal numbers ... 10
operations .. 32

arithmetical ... 32
array ..See array (operations)
assignment ... 35
logarithm ... 33
logical ... 32
modulo .. 32
power .. 32
random value ... 34
sine .. 33
tangent ... 33

options
DPU-based parts ... 63
ground-based parts .. 54

P

parameter ... 37
array with unknown size .. 38
reference.. 23, 38

PM ... See variables (global)
POP .. 60
power (pow) See operations (power)
preprocessor ... 43

commenting ... 43
conditional compilation ... 44
define .. 44
include ... 43

priority_change .. 42

R

random See operations (random value)
runtime library See function (runtime library)

S

safe .. See Category (safe)
scope .. 10
search path ... 54
seed See operations (random value)
signal ... See triggering (signal)

signed ...See data types (simple)
simultaneous execution .. 41
sine .. See operations (sine)
sleep ... See triggering (sleep)
stack ... 19, 63
startup procedure .. 57
struct See data types (structure)
switch ... 12
switch - case ... 12
symbol table ... 10

initialization... 39, 56
size at DPU.. 64

symbols
validity .. 10

T

tangent See operations (tangent)
time line ... 58

size at DPU.. 64
time tolerance

of DPU UDP manager ... 64
tips

compiler bug workaround 51
local held variable size .. 55
performance... 13, 26
reference parameters ... 37
stack size ... 63

triggering
signal ... 41
sleep .. 41
wait .. 41

typecast See data types (conversion)
typedef See data types (user defined)

U

UDP
execute .. 60
ID preservation .. 56
manager reset .. 65
pause ... 62
quit .. 63
remove ... 60
replace ... 59
resume ... 62
step .. 62

union ... See data types (union)
unsignedSee data types (simple)

V

variables
global ... 19
initialization... 19, 21, 35
local ... 19
static .. 21, 61
storage ... 19

void ..See data types (simple)

Institut für Datentechnik
und Kommunikationsnetze OSIRIS

Command Language
Description

Ref.: IDA-OCL-0001

TECHNISCHE UNIVERSITÄT
BRAUNSCHWEIG Issue: 1.5 Date: 02/06/2009

Project:
OSIRIS

Page: 71 of: 71

W

wait .. See triggering (wait)
warning

message ... 45
suppression .. 55

while .. See loops (while)

