Technische Universitat
Braunschweig

Institut fir Datentechnik
und Kommunikationsnetze

OSIRIS
Command Language
Description

Revision 1.5

IDA-OCL-0001
February 2009

Prepared by
Tim Wittrock

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 2 of 71

Table of Contents

Y ol0] o PO 6...
1.1 PUrpose Of thiS DOCUMIEBNTceeieiiiiiit ettt e e et a e e e 6
2 @ = T T TN =T o o] o 6...
1.3 ADDIeVIAtioNS ... 7.
1.4 DOcUMENLAtION CONVENTIONSuttiiiiiiiticmmmee e s e aa s e e e e e e e e e e e e e e e e e e eeeeaenn e e e e e e e e e e e e e e e e e e eeeas 7

Y2 111 (0T U Tox 1 o] o PR 9

G = 1o PR 0.1
3.1 Notation Of NUMDEIS. ... 10
3.2 SYMDOIS SCOPE ...ttt e e e e e e e e e s e r et e e e e e e e e e e e s 0.1
I IRC o] oo 11 o] = I b =T ol 11 o] o NN 11

TR T I 0 1 =T o I T T U UUU PSPPI 11
BB 2 e ———— oottt et b e et ee oo e e eeee et e tetebeba e e e e e aeee et ettrnrnnnbnaa e e aas 11
BT TS Y1 (o] [o T U PPPRTRRTT 12
R TR 3 (o] PP UPUTPR 13
BTG TR 11 o 1 = TP 13
TR T e (o TR/ o 1 = U U PR PSSP 13
B 30 U o od 1 o] o P 14
3.5 Time- And Event Controlled EXECULION ... 14

v DT L= R Y 013 T PP 15

4.1 Data Types for Local Variables ...ttt 15
4.0 SIMPIE DALA TYPES ..uuuuuututttneeeeet s s eeebes e et e ee e et aaaaaaaaaeasassaaaantesseeeeeaetaaeaaaaaaaesaesaaaaaaannnssnreeeaees 15
o A o 110 1T = Ui To] o [U U U P TR 16
o I B O =T = 11 T=To B 1Y o1 PR T TP TPPR 16
O O 4 =\ PP SRUPPP 16
4.1.5 SEUCLUIES @NT UNIONSeeiiiiiiiii ettt ettt e e e e e e e e e e e e s s s e et bbb bbb beeeeeeeeaaaaaaaanas 17
4.0.6 “CONSEANT" VAIADIESuiiiiiiiiet ettt ettt e e e e e e e e e e s e e s e bbbt ettt e e eeeaaaaaaaaaeaeasaaaaaannnnbebeeeeeeas 18

5 Variable DECIAratioNoouuiiiuuiiii et 19
L0t o o= | Y = 15 = o] = 19.
5.2 Global VariabIEs.oooo oottt tee et et e bnrnnanennrnnnnnnnne 9.1

5.2.1 Global variables for data @XChaNQE ... e 19
5.2.2 Global variables for access t0 Certain aBiES..........ccouuuiiiiiiiii ittt e e e e e e e e eeeeeas 20

SR IS = L ToRAY£= T T=1 o] (ST TP 21.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 3 of 71
o N 1 - Y4 TSP 21
AN ol ot 2= [T T D | - PP 23
6.1 “Standard” Vari@bIESeiiiiiiiiiiimmie ettt e e e et a e 23
6.2 “CoNSTANT” VANADIES.......eiieiiiiiei e 23
8.3 RETBIEINCES ...ttt e e e oo e e et e e e e e e e e e e e e e e aan 23
6.3.1 Using Constant Values aS RefEIENCE . .ooaeeei oo it e e eenneeeee e 0 2
6.4 STTUCTUIES AN UNIONSoiiiiiiiiiiiiieeeeeii ettt e e e e e e s s e e e e s s sttt b et e e e e e e s e e s bbb e e eeeaeeeas 24
R Y 1 - £ TSP 25
B.5.1 ACCESSING RANGESciiiiiitiiiiie e iceeeeete et e ettt e e s ettt e e e s et e bttt e s aabb et e e e s aanbbeeeeesaanabbeeeeeeaansbeeeeeannnrees 25
ST Y/ o 1= o= 1S3 1] o [26
7 CONSIANT VAIUBS ...ttt e e e e e e bbb bbbt e it e et et e e e e e aaeeeeeas 28
7.1 SIMPIE TYPE CONSLANTS ..utuuttiiiiiiiiieeeeeeeeeeeeeeeeeeeeseaesseeaaeaseeseaeeesae e aeeeeaeeessssessssssssssssssssssssnnsrnnnnnes 28
7.2 CharaCter CONSTANTSooiiiiiiiiiie ettt e e e e e e e s sttt e e e e e sesanr e et e e e e e e s s b bbb bt eeeaeeeeesannnbeeees 28
ARSI 1] o 0o 1] = o £ PP 9.2
A 0o gp] o1 1o) @] 413 7= o) £ PP 29
7.4. 1 STTUCLUIES NG ATTAYSuuueeeireetsmemmmmm e eeeeeeeaeeeaaaaasassassasasssesseassaeeaeaeaaaeaaessessasaaassssssnsssssnnsnerereeaaenens 29
A5 O 1 4110 L PP SRR 30
S F = WY =T 10181 F= 14 o] o S 32
S T R @ o 1T = L1 To] o PP 32
S I V7 To [Tol @ o =T = (o] £ OSSR 32
8.1.2 Monadic Operators
8.1.3 Random Valuesccvvernnn
S T N = Y O o T=T - L1 [0
8.3 ASSIGNMENT OPEIALON.iie i i e e e e s a e s e e e e e e e e e an 35
S T] ox 1 0] o - PP PPPPPPPPPPPRPP 37
S U ST g U Tox 1 o o PP TR PPPPP 37.
L I LT (1 g I = 1[PPI 37
S I - T = 1 01 = £ PO PP PP TP PPPPPPPPPTTP 37
LS I O (= To o] T PP SRR 39
9.2 Non-OCL-functions (runtime HDIary)cceeeiiieeiiiee e 39
9.2.1 Initializing Built-in Runtime Library FUNCHTScooiiiiiiiiiiiiieeeeeeee s o e e e e e aaeaaeeeeaeeeenan 39
O RSY o=Tox = 1 @] o1 4= T Lo S 41
O S 1= o T PP 41

F0.2 WAT ..ttt e ekt E et et e et e e s e e snnees 41

Z =4 = |Institut fur Datentechnik .
/====J==== und Kommunikationsnetze| OSI RIS Ref.: IDA-OCL-0001
TECHNISCHE UNIVERSITAT))
BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: H H))
OSIRIS Description Page: 4 of 71
O S o = | PP 41
O - | 41
0] = g PP 41
L0.6 SHZE OFf ot e s e —a— 42
10.7 Priority SWILCIINGcoiiiiiiiei e rr e a s e e e e e e e e e e e e e e e e e s 42
0 =T o o T o E7 S o 43
0 It o .0 1=] PSSP 43.
0 2 T[T [43
L B D NG e e ———————————————————————— 44
114 Ifdef ... €ISE ... ENAIT ... e e e e e e e et e e e e e e e e et b eeeeeaeeres 44
D2 O] 4T o] =] g1V [T ST= Vo [45
2 R VAT - Vg 1T o SRR 45
A o (0] £ PSSP 48
2R B = U |1 o] 51
R B I 1S3 A 0 1= VAT o £ 53
14 OCL Compiler & UDP MaNAQJETcceeeeiiiieeriiiaeeeeeeeeeaeeeeeeeeeaesansass s s seseeesssaeaaaaaaseaeees 54
14,1 CoNfiQUIALION ... 4.5
14.1.1 Search Path for INCIUAING FIlES ... e e eeeeeee ettt e e e e e s e e s e s s eeereeeeaaaaeaeaens 54
14.1.2 Aborting After @ COUPIE Of EITOIS. ..ot e e e e e s e e e e e e e e aaaeaeeaenee s 54.
I/ G I o (o1 o [o o= LU o IR (o TR - S 54
14.1.4 Warning MESSAgE SUPPIESSION.uuueeeeeeeeiiiunnrnrrtrtrreereerrereeaaeeaesesssaaaassssessrerrrrrreateeeeeeeeseeann e 55
I/ ISR =T o T T T [o] 14 F= 11T IS 55
I G o T o 1 =T Lo 1 PP 55
14.1.7 SYMDBOI TabIE FilE ... e e e e e e e e e s s et ae e e e e e e eaaaaeaeeaeeeeannnnnes 56
I T T o T 1= PSSR 56
I I @0 Taq] o] (= F7= o] N 1= o] (=TS 56
14.1.20 PreServing UDP-IDS......uuiiiiiiii e et e e e et e s sttt e e e e e e aeaaeessesaa s s nnnensteebaesnneneeeeeaaeaaeeeeanann 56
14.2 Compilation and Handling of UDPS.........ccooiiiiiiii e, 56
I S N [a1 = 2= 1o] o L PP PRSP 56
14.2.2 Compiling a UDP for EXECULION ON StAITUR ee.iueverreiiiiiieiieeereeeeeeee e e e s e s s ssssanreeeeeeeeeereeaeeeeesessensnnnnnns 57
14.2.3 Compiling MUItiple UDPS @t ONCEcommmmeeeeeeeeeiesiisisectietetteeeeeeereeeeeaseesssasssssnssssresaeeeerereaaaeaaeeeesans 57
14.2.4 Compiling One UDP for Execution at CertaiM@(S)............ccccurrrrimmmmmrrrerireressmscsreseeeeeeeeeeessessnssnnnnnns 58
14.2.5 Compiling One UDP for Immediate EXECULIONvueeiiiieiieie e e e e e e e e cecceteeer e e e e e e e e e e s e e s e s nnnnneeees 59

14.2.6 Replace an EXISHING UDPutcemmmmmeeerierieeeeeeessssisssssssseseeeteeereeeeseeessssssassnsnssnssnssnsnrerrreeeaeeeens 59

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI lgom;runikaat?gnztr:le?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 5 of 71
14.2.7 EXECULE @ CeItAIN UDPciiiiii i ieeeee ettt e st e e e e s e e s e e e e nneeas 59
14.2.8 RemMOVE @ CertaiNn UDPccuiiiiiiiiieiiiiie ettt nnne e e e e nnne e e s e 60
I @] o = o T |1 Vo PR 60
14.3.1 SAVE UDP 10 NVRAM ...ttt sttt et e et e e e e e e e s s s saaass b e b ee e e e et e etaeaeeeeeaesaesaaannnnnned 60
14.3.2 Load POP frOM NVRAMociiiiiiiiimmeene ettt snee s nnre e e e e snneeennnee e 61
14.3.3 CheCKk POPS iN NVRAM ...ttt ettt e et e e s nnnee e nenee] 61
14.4 Job Control for Debuggingoooviii e 62
14.4.1 PAUSE @ CertaiN UDPccciut et steee ettt si ettt e e s s e st e e st e e s ne e e s snn e e e snneee s nnreeeans 62
14.4.2 ReSUmME @ Certain UDP............oiiiimecemm e etiee ettt st nnne e e e e e nnne e e nnneeend 62
14.4.3 Execute a Single Command of a Certain UDP...........ccccuuiiiiiiiiiiiiiccee e eeesiinee e r e e e ae e e e e e e 62
14.4.4 QUIt @ CrtaiN UDPcooiiiiiiiiiiieie ettt e e e e e e e e e e e ettt e e s e e e eeaeeeeesssbabba e seseeeaeeeeserennees 62
14.5 Customize DPU-Based UDP Manager and Token IM@etercccvvvevvvvevieeeieveiieeiiee e 63
14.5.1 Set UDP INtErpreter OPLiONSi i eeee e e e et e e eeeeeeetet e e e e eaaeasessesssssnnsnnrenrrnssreereeeraaaeeeeeesd 63
14.5.2 RESEE UDP MaANAQETceititiutuiieeeeeeeiaaeie e e e e aeeeeeeeetetasa s s s aeeeeeeeteeenneeesesssnnaaaaeeaeeeeenestnsnnnnnaaeseeeees 64
IS T0C T @0 T4 o 11T o] o] 1 o] o 1= OSSR 65
L 101 o 11| £ SUPPPN: 65
14.6.1 Command SEQUENCE FlEuiiiiceeeeeee et e e e e e s e s s e s ereerreeeaaaaeeeeesd 65
14.6.2 Symbol Table LOGRlE.......uuiiiiiiiiieeeeee et e e e e e e e e e e e e e aaeeeaeas 66
14.6.3 Command Sequence INfOrmMation LOGQING mmmmm «eeereeeeeeeiieiiisiiiaiuutunrneseereeeereeeasessessassssssnnnnnsersreeeree 67

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 6 of 71
1 Scope

1.1 Purpose of this Document

This document is a short description of @8IRIS commandanguage (called OCL) and the use of
the OCL-compiler version 4.x. The language is ugedcreate functions that operate the
experimental devices and process data from thenaaed

Chapter 2 will provide a short introduction intettasks and qualities of the language. After that,
chapter 3 describes the main features of OCL fouciired programming (like conditional
execution and loops). In chapter 4 you will findormation of built-in data types and how to define
new types on demand. The next chapter (5) shows,thaise these types by declaring variables,
and in chapter 6 you will learn how to access thia depresented by these variables. Since not all
values have to be variables, chapter 7 providesrnmtion for using constant values in your
program. Since you probably want to manipulate de@le your programs, chapter 8 explains data
manipulations like calculations and array operaiddhapter 9 will teach you how to use functions
(user defined as well as built-in). Special comnsatidit are used for time and event controlling are
shown in chapter 10.

After that, we leave the description of OCL itsatfd read about the built-in preprocessor, which is
used for commenting and definition of symbol replaents in chapter 10.7. Chapter 12 helps to
understand the messages you may see during coimpitat at runtime. Having presented a list of
all keywords used by OCL in chapter 13, the subgéathapter 14 is customizing and using the
OCL compiler and the ground part of the UDP manager

1.2 Change Record

Date Revision Author Affected Sections
12/18/2000 0.1 Wittrock | All sections
02/28/2001 0.3 Wittrock | All sections revised,
new: compiler options
04/05/2001 0.4 Wittrock | All sections slightly revised
05/06/2001 0.5 Wittrock | logging information
07/10/2001 0.6 Wittrock POP handling, OCL init-file, complete
revision
07/18/2001 0.7 Wittrock | New configuration option “search path”
08/07/2001 0.8 Wittrock | New command “start”
01/07/2002 0.9 Wittrock | New command “halt”, new compiler

options

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: HL
OSIRIS Description Page: 7 of 71
Date Revision Author Affected Sections
09/03/2002 1.1 Wittrock | New declaration “PM” (global variab)ep
05/15/2003 1.2 Wittrock | Token code compression; new settings

options: verbosity level maximum
number of messages per second; autg
start of UDPs; change in behavior of
POP save command.

11/11/2006 Wittrock | New settings option: size of PM area
10/25/2007, 1.3 Wittrock | New feature: UDP categories (3.4, 9.3)
11/25/2008 1.4 Wittrock | New feature: preserved virtual machirje

mentioned in 10.5, new UDP managet
command to execute UDP on preserved
virtual machine (14.2.7).

02/06/2009 15 Wittrock | Operator priorities updated in 8.1.1

Priority modification command
documented in 10.7

1.3 Abbreviations

RTL Runtime Library UDP User-cefined Rocedure

OCL | Osiris Command language POP | Persistent ®iris Rogram

OCT Osiris Command_bken

1.4 Documentation Conventions

The following text will specify the typing conveatis that are used to explain the OSIRIS
command language syntax.

+ Keywords have to be typed exactly as shown in the docurtientdl represents an end of line
(new line).

+ Referencesrefer to other elements. It can be for exampleser-defined name or a complex
expression defined in the documentation.

+ = following areferencespecifies the definition of theference
* [Expressiong enclosed in square brackets are optional and mayriitted.

* Enclosing(expressiong in brackets is used for grouping.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 8 of 71

(Expressiong+ in brackets followed by a plus may appear one aentimes.
(Expressiong* in brackets followed by a asterisk may be omittedppear one or more times.
Statementsare lists of expressions separated by semicolon.

The vertical rulgd between two expressions indicates an alternatiga. may choose either the
expression on the left or on the right side.

Examples are printed this way // comments are pla ced behind “//"

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 9 of 71

2 Introduction

This is the documentation of the OSIRIS commanduage (OCL). This language allows the
creation of complex programs to solve even compditdasks. The programs are processed by a
two-pass-compiler and executed by a token integpreinning on the DPU. The language supports
multiprocessing and time- or event-driven executlboan be used for

» Data processing
 Commanding and batch processing
e System control

To provide easy programming, the OCL syntax is lsimio the syntax of the well-known
programming language C. All of the tasks mentioabdve can use common functions for data
processing, so the user does not have to solveatie problems multiple. The main differences to
C are the following:

+ Full runtime range checking of array indices.

Complex data types allowed as return values oftians

Mathematical operations on all elements of an aataynce

Global variables at explicitly specified address&s be used to access special memory areas

No dynamic memory management functions and pointers

- lIdentifiers have to be unique. No multiple usehs& same identifier for a type and a variable at
the same time.

+ + +

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 10 of 71
3 Basics

As mentioned before, OCL is used for many differarsks. Because of this, the configuration is
divided in different parts.

* The interfaces of all UDPs and RTL functions préssnthe DPU are stored inside the file
OCLsym.txt . This file is generated automatically by the OGimpiler and should not be
edited by user. All following runs know functionsrgerated by an earlier compiler run (unless
they are deleted explicitly from symbol table) with any repetition of the function
declarations. A simpler version of this symbol &llvithout exact parameter information) is
available at DPU.

» Data types and global variables that are used tegilgacan be defined in a common file that is
included before each compilation. In contrast toction definitions, data type definitions are
not saved for later compiler runs.

* The OCL compiler can be used to compile a couplg@Ps at once as well as commands for
immediate or delayed execution.

* The OCL compiler generates a command sequenceload (and execution) of the token code
and writes it to a file that can be sent to the BRUDP-manager.

» Sources of all compiled UDPs are archived in comtoam with their time stamps and other
additional information.

3.1 Notation of Numbers

There are four different ways to specify constateger values:

» Decimal, the standard, consisting of digits from 9.

» Hexadecimal, specified by leadifig (zero x) followed by a string & -9,a —f orA—F.
« Octal, specified by a leadirfiy(zero) followed by a string &f —7.

* Dual, specified by leadin@p (zero b) followed by a string @fand1.

The decimal number 29 for example may be repredeoye29, Oxld, 035 or 0b1101. These
notations are all equivalent.

3.2 Symbols Scope

Of course, you do not have to work with fix valubsit you can use abstract symbols. These
symbols can be used anywhere inside that scopéichwhey have been defined (or in a sub-scope
of it). Symbol definitions are not valid outsidestiscope. It is not allowed to define a symbol
multiple times inside the same scope, but you camvarite the definition of a symbol inside of a
sub-scope. Such a redefinition does not affecti#imition of the embedding scope but only inside
the sub-scope. After leaving the sub-scope, themdordefinition of the symbol is restored and can
be used as before.

Institut fur Datentechnik .
Ref.: IDA-OCL-0001
OSIRIS

/ = und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 11 of 71

Whenever a symbol is used, the compiler looks t®rcurrent definition. It starts in the current
scope. As long as the symbol is not found, thecbeaill be continued in the next upper scope. A
scope is enclosed by braces like that:

{ scope}
A scope may contain as many sub-scopes as defiredstance:
{ scop€{ sub-scope} { { sub-sub-scopg sub-scope? }

s Example

unsigned long A, // define A to be an unsigned lo ng integer variable
A=0; I/l set the value of A to zero
{ /I enter a sub-scope
long B; // define B to be an long integer variable
A=2; /I set the symbol A (char) from th e outer scope to 2
B = A; I/ assign A’s content to the long integer B
} /[leave the scope, A contains 2, B is lost.
/[enter a new sub-scope
long A; // create a new symbol A. The A fr om the outer scope is not
/[accessible inside this scope an y more
/I A=B; [lsince B is neither defined insi de this sub-scope, nor inside
/l the outer scope, it is not acce ssible here.
A = 12345;
} Il leave this scope, the new defin ition and value of A is lost.
A=A+1; //incrementthe unsigned long var iable A. It now contains the
/l value 3 (remember the change fr om O to 2 inside the first

/I sub-scope!)

3.3 Conditional Execution

The syntax of conditional execution of program ssgpes is similar to C. The only exception is,
that there are ngoto s implemented in OCL.

3.3.1if(..) .. else

if (expression) compound_statemerjtelse compound_statemerjt

This statement is equivalent to the ANSI C statdmkrthe value ofexpressionis non-zero (or
true), the firstcompound_statemens executed. Otherwise @xpressions zero respalse) the
optionalelse -branch is executed. In nestéestatements the firglseis assumed to belong to the
lastif.

3.3.2..7.. .

The result of an expression like this

bool_expressior? yes_expression no_expression

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 12 of 71

is yes_expressignif the bool_expressionis true (or non-zero, anyway) amb_expression
otherwise. Only the resulting expression will baleated. Thea ? b : cexpression cannot be used
as destination of an assignment or as non-consgirence parameter.

long IMax, I1, 12;
iMax =(11>12) ?11:12; // this assigns the m aximum of 11 and 12 to IMax

The type of the result of this expressions is timalkest common type of both possible results, if
both are simple types. If thes_expressioand theno_expressiorare more complex, they have to
be exactly of the same type. If necessary, usaaixiyipe conversions to get fitting types.

unsigned long aucl[4];
bool b;

éﬁc =b ? “yes": “no\0“; // both arrays have to be of the same size!
3.3.3switch - case
switch (switch_expr) { (case case_expr statement_lis)* [default : statement_lisi }
This control flow statement is similar to the C slikcommand (but not 100% equivalent).
case_expr= expression (low_limit.. high_limit) (, case_exp)*
low_limit := high_limit := expression

The values of thecase exps are successively evaluated and compared to thee & the
switch_expr (which is evaluated only once, on entering thet@dwistatement). The first fitting
case 's statement_liswill be executed. Opposite to C, thepressios may be variables as well and
theswitch_exprdoes not have to be of a simple type.

statement_listmay contain any code as well as tireak command, which causes the machine
immediately to continue the execution after gwvatch statement. If théoreak command is
omitted, the execution will run through all follavg case statement_list (without evaluating the
case_expruntil abreak orreturn command is reached.

Thecase_exps may be any constant or variable value as wellrasge, defined hy between the
lower and the upper limit (in this order!):

case 2.. 5: statement list

This executes thetatement_liston 2, 3, 4 and 5. You may also define comma-segaiests of
constant or variable values or rangesxgzressionike this:

case 2.. 5, 7: statement_list
This executes thetatement_lison if theswitch_expris equal to 2, 3, 4, 5 or 7.

Of course it is possible to use the normal C-liketax for specifying lists instead of using commas:

case 2.. 5:
case 7 : statement_list

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 13 of 71

These two lines have the same effect as the lioeaab

The first case that fits the swit@xpressionwill be executed, regardless of any other fittoage
expression following. Therefore thiefault statement has to be the last in the list, becaugs
any value and would render all furtleaise s useless.

Please note that switch doest use jump tables. For performance reasons you dhneake sure
that the most frequently used branches are plagcedmof the list otase s.

3.3.4for

for ([init]; condition; [modify_expression}) statement

The init expression normally initializes the counter vaeabefore the first pass. The counter
variable is checked inside tlw@ndition expression at the beginning of each pass. staeement
inside the loop will be repeatedly executed, ag las thecondition-expression is true. The optional
third modify _expressiommodifies the counter variable at the end of eadsp

statementmay contain any code as well as tneak and thecontinue @ commands. Théreak
command causes the machine to leave the comipletdoop immediately and continue with the
next command. In contrast to that, tbentinue @ command causes the machine to leave the
statement of the current pass only and continue with the caien of the loop at the
modify _expressiorandcondition.

3.3.5while

while (condition) statement

The condition is evaluated at the beginning of each pass. Top statementwill be repeatedly
executed as long as thenditionis true (i.e. non-zero).

statementmay contain any code as well as tneak and thecontinue commands. Théreak
command causes the machine to leave the compihdee loop immediately and continue with the
next command. Theontinue command causes the machine to leavestamentof the current
pass and continue with the execution ofd¢bedition.

3.3.6do while

do statementwhile (condition)

The loop will be executed whileondition is true. Since condition is evaluated at the eihdach
passstatementwill be executed at least one time.

Thebreak andcontinue commands work as described before (see 3.3.5).

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 14 of 71

3.4 Functions

You can build functions that provide actions anttwations that have to be done by multiple
program parts. This allows using the same code fdiifierent parts without duplicating. It is
possible to deliver variables into the functionsl aeceive results from it, so the code of the
function itself can be hold quite versatile.

[category resulttypefunctionname(parameterg { body}

The function can be called using thenctionname from any other code. Thieody contains all
desired actions and calculations and can accessattaenetersprovided by the calling code. The
function can return a result of the tymsulttypethat can be used in further operations of thenzall
code. The calling code can use the function cké kny other value of the typesulttype The
function’s categorymay be specified by the keyworcd#ical andsafe to allow the creation of
robust and reliable UDPs; if the category is orditt®o special protection is applied to the function

It is even possible to call the function’s codeursosely. Functions will be subject of section 9.1.
s Example
The fibonacci numbers are recursively defined as stithe two predecessors:

fib(0) := fib(1) := 1

fib(x) := fib(x-1) + fib(x-2)

This definition can be put into a simple function:
long fib (long x)

if (x<2)
return 1; I let the res ult be 1
else
return (fib (x-1) + fib (x-2)); // return the sum as result of fib (x)
long Value;
Value =fib (12); // assign the fibonacci nu mber of 12 to Value

3.5Time- And Event Controlled Execution

Some tasks may have to be repeatedly executedioreevhile. This can be done by using an
endless loop that waits for a certain tinséedp , see 10.1) or for the arrival of a certain event
(wait , see 10.2) before continuing.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 15 of 71
4 Data Types

Like C, the OSIRIS command language operates vétrakiles of previously (user-) defined types.
The type of a variable has to be declared expfitidfore the first use (see section 3.2 for more
information about the scope of type and variabled®ns). Unlike C, you may assign variables of
different types, as long as they only differ in ttype names. Types that consist completely of
elements of the same type at the same relativéiqosiare accepted as equal.

Different types of the same length may be assigbetcause warnings.

OCL does not allow forward declaration of dataclines.

4.1 Data Types for Local Variables

OCL data types are very similar to C data type$ witly one major exception: OCL contains no
pointers. For creating function calls with returnpdrameters references of variables are used
(similar to C++).

OCL does not allow explicit type conversions of @dex data types. Only simple types or arrays of
simple types may be converted explicitly by theruseprevent compiler warnings. If variables of
different types are mixed in an expression, thellemtype will be converted implicitly to the lange
type to prevent information loss. Variables of eiffint types with the same size may be assigned to
each other but will cause warnings.

The following description will explain the main sgm of definitions.

4.1.1Simple Data Types

Type Description

[signed | unsigned] long 32 bit values. If[signed | unsigned | is
omitted, the defaulligned is used.

double 64 bit precision floating point value

bool 1 bit unsigned value stored inside a lang

integer (true == 1, false == 0)

void Placeholder for “no value”.

Thevoid type can be useful as type of a reference paraneteause this prevents type checking in
calls to external functions. Although it is possiltb assign anything to a void reference, it is not
possible to assign a void type to any other vagialilis not even possible to do an explicit type
conversion from void to any other type. That meahss not possible to access data of void
variables by using OCL.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 16 of 71

4.1.2Enumeration

Enumeration types may be defined like in C:
enum enumname| valuename = constant] (, valuename = constant])* }

Thevaluename have to be unique. They represent long integeesalf noconstantis specified,
the value will be set to the value of the previgakienameincremented by 1.

Enumeration variables or constants (like thekiename) may be assigned to long variables without
problems, but assigning a long variable to an ematio® variable will cause warnings.

Please note that the increment and decrement opedinot evaluate the predecessor or successor
of the current value but only increment or decreinisrinteger value by one. Note also that it is no
possible to use waluenameto specify the (part of) eonstantvalue of anothevaluenamebefore

the enumeration definition is completed.

s Example
enum Colors { BLACK, RED = 10, ORANGE, YELLOW, GREE N, BLUE, VIOLET, WHITE = 20 };

This defines the data typmiors and the constants ack (value 0),Rep (defined to represent 10),
ORANGE(11), YELLOW(12), GREEN(13), BLUE (14), vioLET (15) andwHITE (20). You may use these
constants instead of their values in your programervever you want. Please note that the constants
are no strings. Even when you use a enumeratiostaoin(likeveLLowy, the compiler will handle it

as if the value 12 is specified directly.

4.1.3User Defined Types

The user may define types of specified names hgusistatement like this:
typedef basetypaewtypenamé [number_of element§)*

This statement defines a new type nameditypenamehat matches thbasetype The basetype
may be any simple or more complex or even usenddftype. If the type definition is followed by
one or mord number_of element§, the new type becomes an arraybaketypeclements with
the given dimensions.

4.1.4Arrays

Array types can be defined like in C by a variatdelaration followed by one or more pairs of
square brackets defining the dimension. To defimareay type you have to usgg@edef

typedef basetypaewtypenamé [number_of element§)+

This creates a new data type nanmmvtype that is an array obasetypeelements. For more
information about arrays see section 5.4.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 17 of 71

s Example

typedef unsigned long textlinetype [80];
typedef textlinetype textscreentype [25];

The first line defines a type namestiinetype that consists of 80 unsigned longs. This type can
be used to represent a line of a conventional teextinal. The second line defines a type
textscreentype that consists of 25 of those text lines. If yourdd need the definition of a single
text line, you may specify thextscreentype ~ with the following line instead:

typedef unsigned long textscreentype [80][25];

4.1.5Structures and Unions

Structures are bundles of variables that will kecetl one after another in the memory. Unions are
bundles of variables that will be placed at the esatart position in the memory. The definition of
structures and unions is identical to C syntax:

(struct | union) [typenamd { (vardefinition;)+ }

vardefinition may be any definition of variables. It may be rmdure or union itself. In this case,
omitting the name ofardefinition will put its elements flat into the hierarchy.

If you want to use the data structure multiple 8ingou should define an own type. You can do this
either using the keyworigpedef (see 4.1.3) or specifyirtgpename

s Example

struct TwoChars // definition of the type TwoChar S
long c1;
long c2; /I the address of cl is (address of c1)+1

Ji
This is equivalent to
typedef struct // definition of the type TwoChars

long c1;
long c2;
} TwoChars;

The definition of a union may look like that:

union DemoUnion

{

struct

long c1;
long c2;

Iéng s; [/l clisidenticaltos

%
You will find examples for even more complex stures in section 6.4.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 18 of 71

4.1.6 “Constant” Variables

Variables and parameters can be declared to bearingalues by using the keywopdnst .
Constant variables cannot be altered. The keywamst is important if you want to allow constant
values as reference parameters. The declaratioonstant parameters may look like this:

void Something (unsigned long& aull[], const unsign ed long& aul2[]);

This line declares the parametet2 of the functionsomething to be constant. That means, it is not
allowed to use any write accesstez inside the function.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 19 of 71

5 Variable Declaration

The OSIRIS command language contains a C-like blarideclaration. The only major exception is
the absence of pointers, because these variahléd easily cause program crashes or unexpected
side effects. Use of global variables is limiteduser specified memory areas. Please remember that
using global variables may cause unexpected sidectgf especially in multithreading
environments.

5.1 Local Variables

Local variables may be declared like this:
typevariablenam¢g = constant] (, variablename¢] = constant])*
Thetypemay be any of the data types mentioned in theigue\chapter (4, Data Types).

The constantis used to define an initial value for the dedfavariable. Static variables will be set
to this value only once (before the first executidhthe initial value is omitted, the variablelwi
not be initialized and may contain random valugsti(s variables will be initialized with O,
however)

Normally, local variables are located on the I®tack, which allows fast accesses for calculations.
Unfortunately, the size of the local stack is leait To prevent early stack-overflows, the compiler
will automatically generate code for storing largariables in dynamically allocated memory.
Remember that this causes (internally) a littlerbdre overhead on accesses to elements of large
variables.

5.2 Global Variables

There are two different kinds of global variabl@hey can be used to transfer data between
different UDPs (1) or to access certain memory sareside image memory (e.g. for image
processing) (2).

5.2.1Global variables for data exchange

For storing and transferring data between UDPsbajlovariables should be placed inside the
program memory (better data protection). It is fgmedo specify the location of the variable inside
a preserved area with affsetrelative to the beginning of the area like this

PMtypevariableat offset;

But it is also possible to place the variable dlyelsehind the previously declared global variaiye
omitting the offset, like this:

PMtypevariable;

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
Project:

OSIRIS Description Page: 20 of 71

The absolute address of global variables insidgrara memory can not be specified.

Accesses to data structures inside program menarynot be interrupted by accesses from other
UDPs. This helps to ensure data integrity by prémgnaccesses to partial modified (= probably
invalid) data structures.

Struct tTempSensor

long ITime;
long ITemperature;

PM tTempSensor oGlobTemp[20];
void ProcessTemperatures ()

{

tTempSensor oLocalTemp[20];

oLocalTemp = oGlobTemp; // this assignment canno
/I all time entries of oLocalTemp correspond to t
// now continue with the local copy, since global

t be interrupted
he temperatur entries
data may change...

I do not use the following lines:

oLocalTemp[0].ITime = 0GlobTemp[0].ITime;

/l 0GlobTemp[0] may change now

oLocalTemp[0].ITemperature = 0GlobTemp[0].ITemper ature;

}

void BuiltTemperatures ()
tTempSensor oLocalTemp[20];
/I fill the local temperatur and time arrays
))lwrite the whole array at once

0GlobTemp = oLocalTemp;

}

5.2.2Global variables for access to certain addresses
If certain memory addresses have to be access#flglariables have to be declared as follows:

fixed typevariableat address

The absoluteddressof the global variable has to be specified exfiicnside the declaration. This
kind of global variable shouldot be used for data storing, since the image menwnot well
protected against data corruption.

The variable may be an array or any other type that will beestdeginning ahddress(inside the
DPU's local memory). Please note thdtiressshould be chosen with care, since accessing lillega
memory can cause program crashes (the compilemoarcheck the integrity of the specified
memory).

After this declarationvariable can be used like any other local variable in &IRd.

Global variables are not initialized automatically.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 21 of 71

5.3 Static Variables

Variables may be declared static by using the keghstatic . While 'normal’ variables do not
hold their values when the scope is left, staticaldes remain in memory and do not alter the
stored value between leaving and re-entering thpescThis behavior is similar to C.

Since accessing static variables is slower thaessuoeg internal variables you should use static
variables only if necessary.

Static variables will be initialized with zero, esk another constant value is specified inside the
declaration. The initialization of the static véuliais done only once (at compile-time).

5.4 Arrays

Arrays may be declared like follows:
typearrayname([number_of element§)+

As you see, it is possible to declare one-, twoaryr other multidimensional array variable just by
specifying a sequence of desired number of elements

unsigned long asz[20][80];

unsigned long al[20*80];
The first line specifies a two-dimensional arrayafgs. It may be seen as a list of 20 lines wilth 8
columns each. Usingsz[s] would specify the whole sixth linesz specifies the whole block of 20
* 80 values.

The second line specifies a one-dimensional airaf the same size asz. The main difference is
the access to elements:

* asz[line][column] is equivalent taifline*80 + column]
e asz[line] IS equivalent taifiine*80, 80]
e asz IS equivalent tau .

number_of_elementsay be omitted in special cases:

* Inside of function headers to allow passing ari@ygariable length to functions. If the number
of elements is not specified, the parameter hdasetdeclared as reference (us&)g Runtime
range checking will prevent illegal memory accesses

* Inside of unions. The size of the array will be tgethe maximum size that fits into the union
without changing the union's size. Runtime rangeckimg is not affected; it is not possible to
access memory outside the union. The actual sizbeofirray is known at compile time, so
range checks are done at compile time already.

» If you specify a default value for the array vak&lyou may omit the number of elements of the
outermost dimension, since it is given by the siz¢he default value. The actual size of the
array is known at compile time, so no runtime clseste needed.

Note that only the size of the first dimension ni@y omitted, anyway. So the syntax of the
declaration of arrays with unknown size at compitee is one of the following:

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 22 of 71

typevarname[| ([length])*
typearrayname[| ([number_of element$)* = default_value;

For instance, you may specify an array of threagsrlike this:

unsigned long asz[][7] = {“first ", “second”, “thir d"}
This is equivalent to the following declaration:
unsigned long asz[3][7] = {*first ”, “second”, “thi rd”};

Please note that the stringst” , “second” and-hird” are assumed to be arrays with 7 unsigned
longs each. The length has to fit exactly for assignts.

Z = Institut fir Datentechnik .

/= = und Kommunikationsnetze] OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT)]
BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: HI]]

OSIRIS Description Page: 23 of 71

6 Accessing Data

Generally, all accesses to local or global memogyhandled identically. It makes no difference for
the user to use local variables or external datasidally, accessing variables is very similar to C,
with a few exceptions that will be described irstbhapter

6.1“Standard” Variables

The standard variables (local or global variabtes) be accessed like in C.

Although local variables use memory in the maclsteek, global variables use own memory and
external variables use memory mapped by the haelwaver, the user does not have to pay
attention for it — the syntax of all accesses entetally.

6.2 “Constant” Variables

Variables that are declared to be constaohgt) can be used only for read accesses. It is not
possible to modify their contents (write access)nglant variables will probably be in most cases
parameters of a function that may not be modifredny way inside the function.

void Something (unsigned long& aucl[], const unsign ed long& auc?2[])
const

must not be altered.
auc2 may be read

aucl[0] ='1"; // allowed, since aucl is not
/l auc2[0] ='2"; /I error, auc?2 is constant and
aucl[1l] = auc2[2]; // ok, aucl may be altered and

void Anything ()

unsigned long auc[100];

const unsigned long cauc[] = “constant”; // assi gnment in definition is ok

// Something (“forbidden”, “allowed”); // since
/I declar

the first parameter is not
ed to be constant, it is not

/l allowe

/l Something (cauc, auc);
/I constant. The se

/I but can not be a

/I same as before:

Something (auc, auc); // ok, but the second para

/I Since both parameters a
/I will access the same me
Something (auc, cauc);

/l cauc[3] ='a’; /I not allowed, since cauc

d to use a constant here.

first parameter must not be

cond parameter may be variable,
Itered inside the function

meter is not initialized yet.

re references, aucl and auc2
mory inside the function.

is constant!

6.3 References

References to variables are allowed only in fumctieeaders. All accesses to the referenced
parameter inside the function will be accessesheroutside variable itself. A parameter is defined

as reference by following the type &y

type& parametername

IDA-OCL-0001

Z=§ = Institut fir Datentechnik .
/====J==== unnsdI Eom;runikzt?gn?r:\e?;e OSI R I S Ref.:
TECHNISCHE UNIVERSITAT _ _
BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Description Page: 24 of 71

Project:

OSIRIS

The type may be any simple or user defined type. Note > notan address operator. Its use is
allowed only in the parameter list of function dealions, not to build a reference return type.
Generally, the source type and the destinatiorigete) type have to fit exactly, typecasting is no
possible.

6.3.1Using Constant Values as Reference

You cannot assign constant values to referenceymdess as long as the parameter is not specified
to be constant by using the keywamshst in the function declaration. Parameters declaoeblet
constants may not be altered inside the functiea £51.6).

6.4 Structures and Unions

Elements of complex data structures (struct andrjréan be accessed like in ANSI C:
datastructure. elementname

Thedatastructuremay be an element of any other data structurayastruct or union) itself. Since
elements of unnamed substructures are put flattheosuperior data structure, they are accessed
like any other element of the superior structurgh@@ut an additional that would indicate a deeper
hierarchy).

You can copy whole data structures. Local strustared unions may be byte-filled with a constant
value by assigning a constant char (no variablesranvalues that do not fit into 8 bits!) to the
whole structure or union. This feature is suppasete used for fast initialization of all bits to a
defined state, so the constant will be probablyost cases be zero (no bit set) or Oxff (all bet3.s
The syntax is the following:

datastructure= constant_char_value
s Example

(Note: The typawochars has been defined in section 4.1.5 already.)

union // definition of the variable SimpleUnion
{
TwoChars; // var name omitted, creating Simple
/I SimpleUnion.c2 (offset 1)
longs; // creating SimpleUnion.s (offset 0)
struct /I creating SimpleUnion.TwoUnsigned (offset 0)

{

Union.c1 (offset 0) and

unsigned long ucl; // SimpleUnion.TwoUnsigned
unsigned long uc2; // SimpleUnion.TwoUnsigned
} TwoUnsigned;
long ac[]; // create an array of longs that is
/I fit inside this union without enl
/[array ac will consinst of 2 eleme
} SimpleUnion;

SimpleUnion.TwoUnsigned.ucl = SimpleUnion.c2;

You can also use a previously user-defined type:

union SimpleUnionType // definition of the type Si

.ucl (offset 0)
.uc2 (offset 1)

as large as possible to

arging it. The resulting
nts here.

mpleUnionType

E, Institut fur Datentechnik .
/= = und Kommunikationsnetze) OSI R I S Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT . .
BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: H H))
OSIRIS Description Page: 25 of: 71

TwoChars SubChars; // var name given, creating XYZ.SubChars.cl

/I (offset 0) and XYZ.SubCha rs.c2 (offset 1)
longs; [/ creating XYZ.s (offset 0)
struct /I creating a substructure without n ame. (offset 0)

unsigned long ucl; // XYZ.ucl (offset 0)
unsigned long uc2; // XYZ.uc2 (offset 1)

k

long ac[]; // create an array of characters tha tis as large as possible to
/I fit inside this union without enl arging it. The resulting
/[array ac will consinst of 2 eleme nts here.
k
/I since this is just a type definition, there are no sub-elements accessible.
/I After declaring a variable of this type, you are able to access its elements

Il by replacing the XYZ with the variables name.
SimpleUnionType SecondSimpleUnion; // declare a v ariable of this type
SecondSimpleUnion.ucl = SecondSimpleUnion.SubChars. c2;

Please note thaimpleunion andSecondSimpleUnion contain different unnamed substructures, but
represent the same internal structure.

6.5 Arrays

The access on single elements of Arrays is justhi#ndled in C:
array [index]

Thearray may be an element of any other data structurk.itse

Arrays may be byte-filled with a constant value dgsigning a constant char value to the whole
array. It is not possible to use variables (evdahel are declared to be constant) or non-charegalu
as source for byte filling.

6.5.1Accessing Ranges

You may access a subset of an array at once byhgpga range of elements. Since all specified
elements has to build one block without gaps, tmege definition is allowed only for the last
specified dimension and may not be followed by amther element specification. There are two
different ways to specify array ranges:

array_variable[first .. last]

Thefirst value has to be less thist This returns the elements of the array startingdexfirst
and ending with indexast The other way is to specify the starting elemamd the number of
elements inside the range:

array_variable[first; size]

sizespecifies the number of elements and has to ladua equal or greater than zeficst may be a
variable that contains the value for the indexhef first element of the specified range.

Z=4 = |Institut fur Datentechnik . - _
/5‘)55 und Kommunikationsnetze] OSI RIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 26 of 71

It is possible to use ranges for copying a padrofirray into another part of the same array, éven
the source and destination areas overlap.

For performance reasons you should prefer usiray aanges instead of loops over array elements.
This refers to assignments as well as for simpegatpns (see 8.2 also).

Please note that you must not use array rangeariaile size for calculations or accesseBMalata
in functions of categorgritical or safe .

s Example

union DummyUnion // size specified by the included structure: 7 bytes
char ac[]; //length will be set to 7 elemen ts (7 bytes)
long al[]; // length will be setto 1 elemen t (4 bytes)
short as[]; // length will be set to 3 elemen ts (6 bytes)
char aacf][3]; // will be set to aac[2][3] (6 by tes)

struct // size is 7 bytes

short s;
long I;
char c;
b
e

void DummyFunction (char& aac[][3]) // a variable number of 3-character strings

DummyUnion u;

longi=1;

short as[8]; // array of 8 short elements, the r esulting size is 16 bytes

short as2[20];

DummyUnion aaU[10][8];

u.aac[i] = aac[4]; // accessing the parameter ac c[4] may exceed the range!
/[accessing u.aacfi] is rang e checked at runtime (access is
/[limited to element 0 and 1)

as = OxAA; /[fill all 16 bytes of ‘as' with value 0010101010

as2[10..17] = as; // assignment to an 8 short | ong subset of as2

aaU[3][3..5] = aaU[2][1..3]; // ok
aaU[1..4] = aaU[5..8]; /I ok

aaU[1..4] = aaU[3,4]; Il ok, the overlapp ed copy is handled correctly
// aaU[3][3..5].s; would cause an error, since i t is not allowed to refine

I specification (.s) after ara nge ([3..5])

/l aaU[1..2][2]; is not allowed for the same r eason.

6.5.2Typecasting

Variables of a certain type can be converted inteenotypes explicitly by entering a type cast
command:

(typename variable

Explicit type casting can be used to suppress demprarnings that would occur on implicit
conversions.

Typecasts are possible in the following cases:

75_?5;::] Institut fur Datentechnik
420 = und Kommunikationsnetze]
TECHNISCHE UNIVERSITAT
BRAUNSCHWEIG

Project:

OSIRIS

OSIRIS
Command Language
Description

Ref.: IDA-OCL-0001

Issue: 1.5 Date: 02/06/2009

Page: 27 of:

71

* The source type has the same physical size asttmation type. The source data itself will not

be changed but handled as if it is of the destnatype.

» Source and destination types are simple types.sbhece will be shrunk or enlarged to fit the

destination type.

* Source and destination types are arrays with theesaumber of elements. The elements are

converted like described before.

Other type conversions are not handled.

It may be helpful to use a typecast for specifyiing data type of constant values. Since the data
type of Oxffff can be either signed (-1) or unsidrshort (65535), the result of an operation can be
quite different, depending on the interpretationtttg constant type. The OCL compiler takes all

constants as unsigned values, as long as no ne@agiv occurs.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 28 of 71

7 Constant Values

Constant values can be used instead of variablese&aml-only accesses. It is not possible to use
constant values as destination of data. Constarig mot be used as non-constant reference
parameter to functions.

7.1 Simple Type Constants

The format of constant values of a simple typeesctibed in section “Notation of Numbers” (3.1).
These constants may be used as initial value, emmgder, as assignment source and even as
operand of any calculation.

Constant values between 0x00000000 and Ox7fffe#ffehno fixed sign and may be used as signed
or unsigned values, unless a negatioh dr type cast occurs. Values between 0x800000@0 an
Oxffffffff are assumed to be unsigned integers.

7.2 Character Constants

Character constants are single unsigned long vaduelaracter constant is specified as follows:
‘ character!
The character may be any ASCII character as wehespecial characters described below.

Some special characters can be specified insidestifng by a leading backslash:

newline (line feed) NL(LF) \n
horizontal tab HT \t
vertical tab VT \v
backspace BS \b
carriage return CR \r
form feed FF \f
alert BEL \a
backslash \ \\
question mark ? \?
single quote ’ \
double quote " \"
octal number 000 \ ooo
hex number hh \x hh

The octal and hexadecimal representation can ke tosgpecify any character. Octal numbers may
consist of up to three digits between 0 and 7;mexbers may consist of one or two digits between
0 and f (you may use capital letters also).

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 29 of 71

7.3 String Constants

String constants are zero-terminated one-dimenkiarrays of unsigned long values. A string
constant is specified as follows:

 string ®

The string may be any sequence of characters (2efr7information on non-ASCIl-characters).
The resulting array will contain the whole sequendth an additional zero byte at its end. The
constant string source may be shorter than thendéisih without causing any warning or error.

A string constant may be handled like any otheayarr

unsigned long szText[8] = “abcdefg”; // fill szTex t with ‘abcdefg\000’
szText = “abcdefghijkimnop”[2,8]; // fill szTex t with ‘cdefghij’

if (_memcmp (“bcdefgh”, szText)) // compare sz Text with ‘abcdefgh\000’
{..}

A string constant may be defined over multiple ¢ime two different ways:

e It may be ended with a double quote, intercepteavbiye spaces or comments and continued
with a further double quote. All white spaces omooents between the inner double quotes are
ignored; all other texts will cause errors.

* The string may be stopped at end of line by a sifglckslash and continued directly at the
beginning of the next line. All white spaces inrtaf the second line are included into the
string. It is not possible to place any ignored tasgide the string with this method.

sz = “first part” // this is continued...

“second part”; // ...here. sz contains now “fi rst part second part”
sz = “first part\
second part”; // sz contains now “first part second part”

7.4 Complex Constants

Complex constants can be used as initial valuepamameter or as assignment source without
problem. Since the type of complex constants isdeteérmined non-ambiguous, it is not possible to
use as operand of a calculation. In that case, haue to execute an explicit type cast on this
constant.

It is possible to specify complete constant datactiires (struct, union or array) by putting the
desired values inside of braces.

7.4.1Structures and Arrays

Since structures and arrays consist of multiplenelgs, it is necessary to define a list of all
elements as follows:

{ const_elemenf, const_elemeny* }

Institut fur Datentechnik .
Ref.: IDA-OCL-0001
OSIRIS

/ = und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 30 of 71

This defines a constant structure or array comgjstif the specifiedonst_elemerst. Any of the
const_elemerst may be a complex constant itself.

s Example

struct strConstDemo

long |;
unsigned long sz[6];
struct
{
long s;
long c;
b
Ji
void ConstCall (const strConstDemo& p)
// initialize static variable v. v.sz is set to ‘GSEOS\000’
static strConstDemo v = {0x12345678, “GSEOS”, {12 345, 0b10101101}};
// now set v to a new value. v.sz is set to ‘GSEO S5’ without trailing zero byte
v = {0x87654321, {'G’, ‘'S’, ‘E’, ‘O, 'S’, ‘5%, {1, 2}};
ConstCall ({Oxaffe, “call”, {Oxcafe, Oxae}});
}
7.4.2Unions

The definition of constant unions consists of thecsfication of the first sub-symbol’'s value only,
because all sub-symbols share the same memoreandthe set independently.

{ const_elemen}

This expression defines a constant union with irst £lement set t@onst_elementlf the first
element of the union is shorter than the complatery the upper bytes of the union are filled with
zero.

s Examples

union uniConstDemo

{
struct
unsigned long sz[6];
long s;
long c;
Ji
long |;
Ji
void ConstCall2 (const uniConstDemo& p)
// initialize static variable v. v.sz is set to ‘GSEOS\000'. sz.l is not
/I accessible for union-constants
static uniConstDemo v = {{*GSEOS”, 12345, 0b10101 101}};
// now set v to a new value. v.sz is set to ‘GSEO S5’ without trailing zero byte

v={{{'G’, 'S, ‘E’, 'O, 'S, ‘5% 1, 2}};

ConstCall2 ({{“call’, Oxcafe, Oxae}});

Z=9 = |Institut fir Datentechnik . - -
/.===J=='= und Kommunikationsnetze] OSI RIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 31 of 71

If you want to use complex constants in calculajoyou have to specify the type of the constant
using type conversion:

typedef long tal[4];
tal al;
long s;

al = s * (tal) {123, 456, 789, 101112};

This assigns the result of the array multiplicatioral . Array operations like this and other data
manipulations will be subject of the next chapter.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 32 of 71

8 Data Manipulation

Data manipulation may be any calculation or reragiieg of arrays.

Internally all calculations are executed in foutdsylong integer or eight bytes long floating point
variables. The operands are converted into therdicaptype before the operation.

8.1 Operations

8.1.1Dyadic Operators

The following table lists all operators that neew bperators. The resulting type of these operation
is the smallest type that can store both operands.

priority axb a=axb |a=ax1
Addition 3 atb at=b ++a
Subtraction 3 a=b a-==b - a
Multiplication 2 a*b a*=b
Division 2 al b al= b
Modulo 2 a%b a%-=b
Power @°) 1 af¥ b
And (bitwise) 7 a&b a&=b
(logical) 11 a&&b
Or (bitwise) 9 al b al= b
(logical) 12 all b
Exclusive or 8 a®b a=b
Equal 6 a==
Not equal 6 al=b
Less than 5 a<b
Less or equal 5 a<=b
Greater than 5 a>b

7:==j:'==-—: Institut fur Datentechnik
4= und Kommunikationsnetze|

TECHNISCHE UNIVERSITAT
BRAUNSCHWEIG
Project:

OSIRIS

Command Language

Ref.:

IDA-OCL-0001

Issue: 1.5 Date:

02/06/2009

OSIRIS Description Page: 33 of: 71
Greater or equal 5 a>=b
Shift left 4 a<<b
Shift right 4 a>>Db
Maximum 10 a>?b
Minimum 10 a<?b

The operanda andb may be simple types or even arrays of simple types the section 8.2 (Array
Operations) for further information. Bitwise opéoats cannot be used on floating point values. The
operands of logical operations are converted tddamobefore execution (non-zero becomes true,

zero values become false). The result type of &giperations and comparisons is boolean.

8.1.2Monadic Operators

The built-in operators that need only one operaedshown in the following table.

operator annotation

Negation (numeric) | - a result type is signed
Negation (bitwise) |~a undefined on floating

point values
Negation (logic) I a result type is boolean
Absolute value abs a result type is unsigned
sine sin a result is floating point
arcsine asin a result is floating point
cosine cos a result is floating point
arccosine acos a result is floating point
tangent tan a result is floating point
arctangent atan a result is floating point
natural logarithm In a result is floating point
exponential e exp a result is floating point
decimal logarithm log a result is floating point
exponential 10 10 * a see ‘power’ operatiof

in section 8.1.1

(Dyadic Operators)

—

The unary_expression‘a” may be any single value or array (see sec8d) as well as more

complex expressions within brackéts.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 34 of 71

s Example for Calculations

{
long |11 = 12345;
long 12 = 24680;
long I3;
double d;

13=11<?12; //'13 = 12345 (= minimum of 12345 and 24680)
d =13 *0.321;
}

8.1.3Random Values
Pseudo random values can be generated using theieky

random

It returns a double value € x < 1. It is also possible to use this command to gdaevalues
between 0 and a specified value:

random (limit)

The result will be a random value of the same ggkmit. It will be inside the intervdl0, limit].
This command can be used as well to generate asfagmdom values. In this cabmit has to be
an array of the desired type, and its elementsesemt the upper limit for the value of the
corresponding random element. That means, the lohithe random value may be specified
separately for each element.

The random number generator can be initializedgugia command
seed ([expression)

This command sets the starting point of the randamber generator to the valueexfpression If
expressionis omitted, the generator will be initialized wighvalue depending on the system time
and a pseudo random number generated before thitiaéization.

s Example

{
long |11 = 12345;
unsigned long auc1[10] = “abcdefghi”;

double d;
aucl = random (“123456789” — ‘1"); // no zero ter mination!!!
d = random * 10; //0<=d< 10

I1 = random (I1);
}

8.2 Array Operations

All mathematical and logical operations may be usedirrays as well as on single elements. This
method is faster than a self-made loop over athel#s.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 35 of 71

An operation between a simple type value and ayanill evaluate the operation on the value and
each element of the array. The resulting arrayaswititain the same number of elements as the input.
The type of the elements is the same as the tygleeoksult of the according non-array-operation.

An operation between two arrays will process theesponding elements of both arrays.

Multidimensional arrays will automatically be flatted before processing. That means that the
result of an array operation will always be a omaahsional array, regardless of the number of
dimensions of the operands.

Remember: These array operations are no matrixecor-operations!

It is not possible to use functions that are defifog scalar parameters for processing whole arrays
instead. This is a feature of built-in operation$/o

Please note: Functions of categomical or safe are not allowed to execute array operations
on variable sized arrays.

s Example

{
unsigned long auc1[10] = “abcdefghi”;

unsigned long auc2[10] = “ihgfedcba”;
unsigned long auc3[10];

double ad[10];

auc3 = aucl >? auc2; // auc3 = “ihgfefghi”

auc3[0,5] = auc3[0,5] + (A’ —‘a’); //auc3 =" IHGFEfghi”
ad = sin auc2; // calculate the sine of the AS Cll values

}

8.3 Assignment Operator

The assignment operator can be used for assignroésimple type values as well as arrays and
complex data structures. Even the assignment af aenges is allowed (and is much faster than
subsequent accesses to single elements insideps)lo

Please note that it is not allowed to access Marisized array ranges in the PM global memory
pool, if the function’s category mitical or safe .

Besides of this normal assignment of values tcabdes of the same type, the assignment operator
may be used to fill all bytes of a complex datacure (like a union, structure or an array) with a
user defined value. This value has to be a charectestant.

complex_data constant_char

complex_datamay be a union, structure or an array. All bytésitowill be set to the value
constant_char

s Example

unsigned char auc1[10] = “abcdefghi”;

i‘)g: Institut fur Datentechnik
420 = und Kommunikationsnetze]
TECHNISCHE UNIVERSITAT
BRAUNSCHWEIG

Project:

OSIRIS

OSIRIS

Command Language|'ssve:

Description

Ref.:

Page:

IDA-OCL-0001

1.5 Date: 02/06/2009

36 of:

71

unsigned long auc2[10] = “ihgfedcba”;

unsigned long auc3[10];
unsigned long aul[10];

auc3 = aucl >? auc2; // auc3 = “ihgfefghi”
auc3d[0,5] = auc3[0,5] + (A’ —‘a’); // auc3 =*
aucl =rand (“123456789” — ‘1’); // no zero termi
aucl[1,9] = aucl[0,9]; // move all elements one

aul = Oxba; //fill all elements with Oxbababa

IHGFEfghi”
nation!!!
step up

ba

Z=9 = |Institut fir Datentechnik . - -
/.===J=='= und Kommunikationsnetze] OSI RIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 37 of 71
9 Functions

All functions represent UDPs. It is possible to @s® desired UDP from within another one.
Nevertheless, only UDPs that do not expect parasetn be started directly (via timeline or direct
execution command), since the start mechanismmiatgsrovide parameters.

All normal compiler runs should know built-in fummbts by reading the symbol table file
symbols.tab already, so you should not try to redefine thesetions.

9.1 User Functions

Functions are handled very much like in C. The fiamcdefinition syntax is the following:
[category typefunctionname((type[&] parametername*) (compound_statemerit;)

The compound_statemeniay be any OCL code embedded in braces. It isiljest declare
prototypes of functions by replacing tbempound_statemertty ; . This is useful if you want to
define functions that call a later defined functi®@mnce at least the function header must be known
when the call is to be compiled, use the prototgpfnition before. Please note that the function
header of the later function definition must beatlyethe same as the prototype declaration.

Recursive function calls are allowed.

Functions may be called by any other OCL functidhe functionname is used to specify the
desired function.

9.1.1Return Value

Unlike C, OCL allows complex return types like stwres or unions. If nothing is returned by the
function, you have to specify the return type/ad .

Although it is possible to use large complex typegeturn value you should remember that return
values are stored twice on the local machine sf{ackated in the local memory of the called
function and copied into the local memory of thdimg function). Therefore you should avoid
using large return types. It is not possible tongferences as return type.

9.1.2Parameters

Since there are no pointers in the OSIRIS commanduage, parameter transfer normally is done
by copying memory into local function memory. Thmg&y result in a lack of performance, when
large amounts of memory have to be copied (for gtambitmaps as parameters). To avoid
extensive memory duplication, you may specify patmnrs as references. As referenced parameters
are not copied into the local memory of the functiall modifications of reference parameters
inside the function will take effect outside al3dat means, you can use reference parameters for
the bi-directional transfer of data to functionsl drack.

77;—: Institut fur Datentechnik

und Kommunikationsnetze] OSI R I S

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 38 of 71

Ref.: IDA-OCL-0001

The declaration of a reference parameter is dorent®ring the reference operagobehind the type
of the parameter. Please note that accessing meterparameters is slower than non-reference
parameters. You should use reference parameters$aoriivo reasons:

* Modifications of the parameter inside the functi@s to take effect outside
* The parameter contains a large amount of memory.

Empty brackets mean that there are no paramesarsférred to the function.

It is not possible to define functions with a paeten list of a variable length.

It is possible to specify arrays of unknown lengghparameter by leaving the square brackets empty
([1). If you do so, you mustpecify this parameter as a reference (u&ngdPlease note that all
modifications done inside the function will havéeet to the array outside the function also.

s Example
void Increment (long& sr)

++sr; /[increment sr.

}

EndianUnion DemoFunction (long |, long& sr)

{

EndianUnion Result;
Increment (sr);
if (1> 0)
return DemoFunction (I-1, sr); // recursive ca

Result. TwoUnsigned.ul2 = 1234;

Result.s = sr; /l store curren
Sr=sr*2;
return Result; /l return

}

long Length (unsigned long& uc[]) // allow char-a
/I transferred

long |;
for (I = 0; uc[l] != O; ++I); // run until th
return |; /l return the |
/Il the size of
}
void main ()

EndianUnion VarUnion;
short S;
long l;
unsigned long uc[256];

| =3;
s =2;
uc = "Demonstration";
VarUnion = DemoFunction (I, s); // after this c
/I the followin
1
/l's
/I VarUnion.s
/' VarUnion.Two
| = Length (uc); /I after this c

t srin return value

rrays of any length to be

e terminating O is found
ength. (note: this is not
the array)

all, the variables will contain
g values:

Unsigned.ul2 == 1234
all, | will contain 13

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 39 of 71

9.1.3Categories
category.= critical | safe

Unlike C, functions can be assigned to differentegaries. Depending on the category, some
features of the functions differ:

 No category specified: Normal behavior, all langragatures enabled, may call all
functions. Generated token code might use dynaneimony management, array operations
with variable sized ranges are allowed, large leeaiables will not be stored on the local
stack. Out-of-memory condition might cause abortddrihe UDP. Since the token code is
not permanently stored in executable area, calhedJDP might fail if not enough memory
is available to store the token code.

- safe : May call onlysafe functions, variable sized array ranges can notuged for
calculations or accesses to PM data pool. All leeaiables will be stored on the local stack
(keep this in mind to prevent exceeding the stdaakiatime!), even if the size exceeds the
limit specified byHoldLocalSize: (see 14.1.3). No dynamic memory management is used
at runtime. The token code is stored in executaf®@a permanently, so it can be called even
if no free memory is left.

» critical : May call onlysafe functions, variable sized array ranges can notideal for
calculations or accesses to PM data pool. Largd lariables will not be stored on the local
stack. Out-of-memory condition might inhibit theuging of the UDP, but once it is started,
it is protected against out-of-memory aborts, sidgeamic memory management is used
only at starting time. If a critical UDP is abortesbme special actions take place for error
recovery.

9.2 Non-OCL-functions (runtime library)

It is possible to use functions that are not wmitte OCL: You can use OSIRIS-built-in runtime
library functions. These functions can easily béedadrom your normal OCL programs.

Please note that the interface between OCL ancktbaternal functions cannot provide reliable
error detection and type checking, since the raedmpeter types of the non-OCL-functions are not
known for sure by the compiler. A wrong declaratajrexternal functions may cause fatal errors up
to program crashes.

Normally, the compiler should know all built-in fations already (from the first compilation run of
init.ocl , Which contains the declaration of these funcliol®u may call any of these functions
like any other (user-defined) function without aduhal declarations. If you have an existing
symbol table file, you can skip the following secti

9.2.1Initializing Built-in Runtime Library Functions

This section describes how to initialize the symiablle file with the headers of built-in functions.
You should do this with maximum care, since comedpsymbol table information may lead to

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 40 of 71

program crashes on DPU. Normally, there shouldeb#yrno need at all for the user to initialize the
symbol table, so most people may want to contintiie tlve next section now.

If you really have to create a new symbol tablej iave to initialize it with the built-in functions
before you compile UDPs. This initialization candme very easily:

All you need is a file that contains the interfatgelarations of all built-in functions in exactlyet
same order of their appearance in the DPU's julnlp.tdake sure that the interface declarations fit
the interface definitions used for the real funesiof the DPU, since differences may cause fatal
malfunctions! There is absolutely no automateds:agecking!

The interface declarations for built-in functiom®ks very much like prototype declarations of user
defined functions (consisting of the return tygee RTL function name and the list of parameters).
The only difference is the keywogedtern in front of each declaration, like shown in thédwing
example:

extern long Check (long INoOfUnits, long IDelay);

To generate a new symbol table file you only haveldlete the previous version of this file (if
present) and call the compiler with the optiamc like this:

ocl —mcinit.ocl

The compiler will detect that there is no existgygnbol table and will enter the initialization-mode
automatically. The function interface definitionsuhd in the fileinit.ocl will be processed and
stored inside the new symbol table file.

After this initialization you may use any of thenfiions declared inside the fiieit.ocl without
including this file again.

Normally the complete interface to the built-in éions should be provided with the OCL compiler
(for instance inside the filimit.ocl). There should be no need for you to change thiadsdions.

Please note that differences between the OCL-deiarand the real needs of the built-in functions
can cause fatal errors!

Since all built-in functions have to be declarecaghole at the beginning of the symbol tables it i
not allowed to add furtheexXtern ' functions in later compiler runs. Any use of thksyword in
compiler runs with an existing symbol table fildlwause error messages!

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 41 of 71

10 Special Commands

10.1Sleep

This command stops the execution for a specifiedber of milliseconds.

sleep time;

10.2Wait

This command will stop the execution until the sfied event occurs or the time exceeds the
timeout value. It is not possible to wait concuthgfor the same event.

wait ([timeout], event)

The timeout may be omitted. In this case the machine will meancel the wait for the specified
event The command returns a value, which specifiesg¢hson of continuation:

e O event occurred

e RC_TIME: timeout occurred

« RC_FAIL: waiting failed, e.g. because other tasks aréingaior the same signal
10.3 Signal

signal event;

This command will set the specified event.

10.4Halt

This command stops the execution of the current UWDRediately. To continue execution, the
according command has to be sent to the UDP mahgdend (see IDA-OCL-0003, sections 4.1.8
to 4.1.11).

Thehalt command is thought to be used for debugging pegosly. It should not be used inside
regular UDP code.

10.5Start

This command will start execution of the specifid®P within another token interpreter and
continues the execution of the current UDP immetiyat

start (UDP_Name)

The start command will only be successful, if tHeRs ID and name at execution time fit the ones
found at compilation time. This behavior shouldvare incorrect UDP calls.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 42 of 71

The return value of the start command indicatestloeess:

* 0: aninterpreter received the start command afidrwto execute the UDP

e 1: the UDP does not exist (at least not with threnfer ID)

» 2: the UDP has been replaced by another one (wfdreht name)

« 3. all interpreters are currently busy (tbiart command cannot initiate the execution of
UDPs on the preserved virtual machine. Even if tbisimand fails there is one virtual machine
left for ground commands — unless the preservedhmads not busy with another ground
command already)

Any other value than 0 indicates that the startroamd failed. Please note that this return value
does not contain any information about successhef UDP execution (which probably is not
finished at this time).

10.6Size Of ...

The commandizeof can be used to derive the size of the memory bgea certain variable or
data type.

sizeof can be used on array parameters of variable dizdbis case the size of the referenced
array will be derived at runtime.

Normally it is impossible to mix type-name and diglames of a data structure to specify an
element. The only exception is inside #®of command: the first part of the specifier may be a
type name, all following may be field specifiers.

s Example

long |;

| = sizeof (PreciseUnion.s); // 1 =2 (bytes), the size of the field s of the
I type PreciseUni on

| = sizeof (BitPreciseUnion.s); // | = 2, the size of the field s of the variable

/I BitPreciseUnion

10.7 Priority switching

The commandpriority_change (priority) ; can be used to change the priority for the
execution of the calling UDP for a short amountiwfe. The value of priority can t&(higher than
normal),1 (normal priority) or2 (lower than normal).

Please note that UDPs can be preferred or defegtatively to other UDPs. It is not possible to set
the priority of UDPs above other tasks than UDRs (brevents UDPs to block low-level tasks).

The priority of UDPs is reset to ‘normal’ automatig after a maximum period of 20 seconds after
the lastpriority_change command.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 43 of 71

11 Preprocessing

The OCL compiler built-in ‘preprocessor’ is notlisepreprocessing the input before compilation. It
is rather a kind of 'text-processing in betweenhéhkver the parser comes across an unknown
symbol, it activates the preprocessor to replaeesyimbol, if there is a replacement defined for it.
After replacement, the compilation will continue.

Please note: Although you might define symbols #ratalready used by the compiler (like OCL
keywords or data types, variables or function ngmewese replacements will never be used,
because the text-processor will not be activatélaeifsymbol is identified by the parser.

11.1 Comments

Text included in* */ is ignored. Comments may be nested. If insiderancent a openingf is
found, the next/ will not end the comment mode.

Text following/l is ignored until end of line. It is not possibtedpen or close a further comment
there!

void main ()

/* this is a comment.
/* this is a comment inside an other comment. * /
this is still comment.

*/

return; // last comment

}

Please note thdt or * placed after @ are ignored. Therefore the following example would
cause errors:

void main ()

/* this is a comment.
/* this is the inner comment // and even more ¢ ommented. */
this is still inner comment!
*/
now the inner comment is closed, but the outer co mment is still active.
it is closed here: */
return;

11.2Include

It is possible to divide the OCL startup-file int®veral pieces and put them together during
compilation via#include command. Whenever thénclude @ command appears the compiler
switches to the text of the specified file and cmnés compilation. After compiling the included
file, the compiler switches back and continues atatipn of the previous file.

#include < filename>

or

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 44 of 71

#include " filename"

Any text behind will be ignored until end of ling ieached.

11.3Define

You may define your own keywords by using fliefine command
#define keywordtext

Whenever the compiler reaches an unknown symbahglwompilation, it checks if the symbol is
defined askeyword . If it is found, it will be replaced byext The keyword remains defined and
may be used as long as the compiler is runningismundefined by using the preprocessor directive

#undef keyword
Please note that it is not possible yet to deforaex macros with parameters.

text may be more than one line. In this case\uas the last character of the line that is continne
the next line.

11.41fdef ... else ... endif

An easy way to switch between alternative sourcesas using thgifdef keyword. If the symbol
behind#ifdef is already defined, the compiler compiles the cimilewing directly until the next
#else or#endif command. The code betwekglse and#endif is ignored. If the symbol is not
defined yet, the code following thgfdef is ignored and the code betwefatse and#endif is
compiled instead. Théfndef = command has the opposite behavior.

s Example

#define MSG_INFORMATION 0
/I define DEBUGMODE for creating additional debug i nformation
#define DEBUGMODE

// if in DEBUGMODE create additional message
#ifdef DEBUGMODE

_AddMessage (MSG_INFORMATION, "DEBUG", "debug poi nt 1");
#endif
#ifndef DEBUGMODE
_AddMessage (MSG_INFORMATION, "Info", "debugging mode off");
#else
_AddMessage (MSG_INFORMATION, "Info", "debugging mode activated");

#endif

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 45 of 71

12 Compiler Messages

This section offers a short description of the cden@nd virtual machine messages in combination
with hints for eliminating the reason for these szges.

We have to differentiate between messages thataaghecompile time and messages that appear
during runtime:

 Compile time messages contain the filename and numaber of the input that causes the
message. Only a few messages are not associdied tmmbers.
* Runtime messages are returned via housekeeping data

12.1Warnings

Warnings show potential errors. Since some of thvesmings may be caused deliberately, it is
possible to suppress some types of warnings to keepnessage list clear (see). You should not
suppress all warnings, since some of them coulidatel runtime problems.

Array size unknown - be sure not to exceed it! This means, that you are accessing a
fix element of an array of a variable size. Thisymause runtime errors if the accessed element is
outside the array limits.

Assignment in condition : This warning indicates possible accidental usar&ssignment]
instead of an equality comparisar=| as a condition.

Assignment of different enumeration types : This assignment may lead to a value of the
destination that is out of range.

Assignment to enum - take destination as int : This assignment may lead to a value of
the destination that is out of range.

Cast may truncate significant bits : The operation causes an implicit typecast. The ne
type is smaller than the old type, which leadsasslof information. This warning appears for
example at assignments of long to char.

Conversion causes bit loss indicates that you are assigning elements witleidint sizes.
Conversion of boolean to numeric : You are using a boolean variable or value asnaanic.
Conversion of const unsigned to signed : You are using an unsigned constant value as a

signed value. This warning only appears if the gahses full 32 bit (like 2147483648, which is
0x80000000).

Conversion of negative const to unsigned . This message appears when you are
assigning a negative constant value to an unsigaedble.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description page: 46 of 71
Conversion of unsigned to signed means, that you are using an unsigned variable as

signed. This may cause large values to appeargaive. Remember that all string and character
constants are used as (arrays of) unsigned chegacte

Different array sizes, taking minimum size : An operation on arrays with different
length occurred. To prevent memory access erroespperation will stop after the smaller array is
processed completely. Some elements of the largey will not be processed.

External buffer partly unreachable : You have declared an extern variable that is kemal
than the memory area provided by the hardware drileat means that you will not be able to
access the complete memory area.

Float truncating to int . The floating-point value is truncated to the loweext integer
value.

Ignoring declaration as unsigned . Floating point variables cannot be declared as
unsigned.

Ignoring incrementation on float : The increment or decrement operators are nohekfi

on floating point values.

Ineffective code : You add/subtract a constant floating point zeronultiply/divide by a
constant floating point one. This operation maylyrgtype cast without affecting the value of the
second operand. Maybe this cast is not necesshiy.operation primarily is thought to force the
result of QLook Items to be floating point.

Large parameter copying : You are using a large data type as non-referpacameter. This
may be ineffective, because the parameter has wopied completely, and it may require much
space on the limited local stack.

Low remaining stack : The local memory used by the function is very. ltignay cause runtime
errors with recursion or deep call stacks.

Modulo on floats is not defined, truncating : The operation modulo (%) cannot be
used for floating point values. The value is truadao integer before the operation.

Name conflict on resolving external : You declared a symbol with a name that is also
used as a function in the runtime library. In ttese the runtime library function is not accessible

Non-existing external : The runtime library contains a function that ist mleclared in the
source code. That means, the function is not addeder OCLs.

Parameter has no identifier : The parameter of a function has no name and ¢d®ased
inside the function.

Redefining with different value : You are defining a symbol that is already definédu
should uséfundef before the second definition to suppress this imgrn

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 47 of: 71

Result is always zero : The calculation is redundant, since its resudt constant zero.

Signed interpreted as unsigned : Negative values may be interpreted as large igesit
values.

Source array has a variable size - using size of destination : This assignment

may cause runtime errors if the source is smailen the destination. You should make sure that the
source array is always larger than the destination.

Stack cannot hold local memory : The currently set stack size is too small to halldocal
memory needed by the compiled function. This wallise runtime errors as soon as the function is
called. You should increase the stack size or dser¢he hold-local-limit in the compiler control
panel (the latter takes effect after a new compilaj.

Too many warnings. Suppressing further messages : The currently executed module has
reached the maximum number of warnings. To keepntiessage file readable, all following
warnings of this module will be suppressed.

Types differ with same size, copying : This warning may appear if you are assigning an
array of unsigned values to an array of signedemlilthough the type is changed, the assignment
is done. Remember that there are many cases thdt ire strange values of the destination variable
(for example: you might be assigning a complexctne to an array of floating point values).

Types do not fix exactly : You are assigning a type to a slightly differdata type.

Unknown preprocessor directive . The preprocessor doesn't know the used directive.
Currently you can usénclude |, #define , #undef , #ifdef , #ifndef |, #else and#endif

Unresolved function : You declared a function to be extern that is patt of the runtime
library, you declared a function to be part of dr_@hat is not found or you declared a prototype of
a function without defining the body. Any call dii$ unresolved function will cause runtime errors.
The name of the function is shown in the warningsage.

Unsigned interpreted as signed : An unsigned value is used as signed. This mageckurge
values to be interpreted as negative.

Useless operation : You are adding/subtracting a constant zero orgreumultiplying/dividing
by a constant one. Since this operation does fettahe result, it will be ignored.

Using enumeration value as integer . This is non-critical, since enumeration valuegasis
are internally represented as long integers.

Using numeric value as boolean : You are using a numeric value instead of a baol&ais
message may indicate accidental use of logicalabipes instead of bit operations on numeric
values. It may also indicate an erroneous use miraeric value inside a conditional expression.
Since all non-zero values are interpreted as thigmay cause unexpected results.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description page: 48 of 71
Using temporary value as referenced parameter : The value of a parameter may change

inside the function, but it will have no effectdatside.

12.2Errors

In very rare cases (actually there is no known edseresent) internal bugs of the compiler may
cause the error messages. If you are sure that prmgram is correct although there are error
messages, you should take a look inside the neottome(Fatal Errors) to find tips to create
workarounds on compiler bugs.

Array limits exceeded : You are trying to access an element with a taghhor negative
constant index. This would cause unexpected reauitsntime.

Array with unspecified size has to be reference . If you want to use arrays with an
unspecified number of elements as a function patenmngu have to specify it as reference uging

Assignment to constant : You are trying to assign a value to a constant.

Assignment of different types - You are trying to assign different types. Thisoisly
possible for simple types (bool, char, short, lothguble) or types of the same size. Since the type
checking is not based on type names, the messagentd show the type names but the top-level
type (a simple typeARRAY UNION or STRUC). Although the top-level type may be equal, the
difference may appear in lower levels.

Cannot assign two arrays of variable size : The sizes of the source and the destination
array are not specified. It is not possible todethe number of bytes to copy.

Cannot handle this type here - You may be trying to use a simple-type operationa
complex data structure. The resulting type issatrtknown', which may cause followitgnknown
Type — errors.

Cannot return a value here : Decoders cannot return a value. Use an emptyrétatead.
Cannot use references here : References only may be declared as function petens
Cannot use variable array size here : You are declaring an array with an unspecified

number of elements in an illegal context. Arraygshwan unspecified number of elements are
allowed only as (referenced) parameters of funstionin unions with at least one element of
known size.

Changing preprocessor symbols : You are using#define or #undef directives inside a
QLook expression. This is not allowed, since thmpitation order of expressions at startup is not
defined.

Constant expected : You cannot use a variable here.

Declaration does not fit prototype : The function header differs from the prototype
header specified before.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
Project:

OSIRIS Description Page: 49 of: 71

Division by zero : Since the division by zero is not defined, thie@tion is ignored.

External buffer too small . A external variable is larger than the memoryasgth the same

name provided by the hardware driver.
File not found : The specified file does not exist.

Global vars not allowed : OCL prohibits the declaration of global variablsmce this would
cause complex timing behavior in combination withltiple parallel accesses.

lllegal character : You are using a character that is not allowee her

lllegal implicit cast on reference : The type of the parameter differs from the fumeti
declaration. Since a typecast is not possible fargrces, the parameter cannot be used. Please note
that parameters (like all internal variables) daogexl in Intel format.

lllegal local use of keyword : You are using a keyword in a forbidden context.
lllegal use : You are using a non-function symbol as a functath
lllegal use of global variable : Global variables cannot be initialized.

Leaving safe path . A function call from &critical orsafe function to a norsafe function
has been detected. Since only functions of categaigy are protected against out-of-memory
conditions even at start-up, it is not allowed @il dunctions of other categories if the calling
function is specified to be protected against dutaemory failures.

I[Value expected : You are trying to use a constant as a parambédris a reference (declared
with &) or you are trying to assign a value to a constds¢ a non-constant variable instead.

Modules must return a value . explicit triggered QLook-interface modules haweeréturn a
value.

Modulo on float undefined : The modulo-operation cannot be used on floatimgntp
variables.

No fitting loop : You are using aont orbreak statement outside a loop.

Not in global scope : The use of some keywords (liegtern anddll) is forbidden in local

scopes. Please note that all QLook-items as wdlbassh files are completely embedded by a local
scope.

Not in single expression mode : Probably you have not specified a function hedwsifore
the brace§ } . Since this is the syntax of the automaticallggared QLook Items, it causes an
error if used elsewhere.

Only the first dimension of an array may be variable : You are trying to declare an
multidimensional array with an unspecified numbédr ebements in any other than the first
dimension.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 50 of 71

Out of memory : This is a runtime error of the virtual machinéeTexecution of the code will be
aborted immediately.

Parse error : The parser cannot find a fitting grammar rule.
Positive constant value expected : Probably you are using a negative value or sabéei

Preprocessor stack exceeded : You are including too deeply nested files, or yoe using too
deep nested symbols. Perhaps you are recursiv@iyding a file or defining a symbol.

Pure virtual function called : You are calling an external function that is hoked. Check
for 'Unresolved external '-warnings and eliminate it.
Returning different types : The type of the symbol that you want to returfieds from the

declared return type of the function.

Size exceeded : You are trying to specify a bit-size of a typattis larger than the internal size of
this type.

Stack overflow : The stack is too small to hold all local data dexk by the virtual machine.
Increase the stack size that is shown in the campdntrol panel (this takes effect immediately) or
decrease the size limit of local hold symbols (takes effect after a recompile).

Symbol already declared : There is a symbol with the same name alreadyadettlinside the

Symbol is not a member : The structure or union does not contain the s$igecielement.
Remember that the compiler is case sensitive.

Syntax error : See explanation in the message itself. If thenmoi explanation, see the following
messages for further information.

Too few parameters : The function call has fewer parameters than tinetion declaration.

Too many errors - aborting : The maximum number of errors is reached and theciot
(compiler- or virtual machine-) execution is abdrt&he code will not be executed any more. This
number can be adjusted in the compiler control paheuntime. If you increase the maximum
number of errors at runtime, code that alreadyreadhed the former maximum number of errors
can be revived — until the new number of erroreé&hed again.

Too many parameters : The function call has more parameters than thetion declaration.
Too many single expressions : The source contains more than one QLook Itemtionc

Undeclared symbol : You are using a symbol that is not declared ydace the symbol
declaration before the first use. Remember thattmepiler is case sensitive. Maybe you are using
a formerly known preprocessor symbol that is nogkr defined (perhaps you deleted the symbol
using the compiler control panel?).

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: HL

OSIRIS Description Page: 51 of 71
Unexpected end of file : Probably there is a comment not closed.

Unknown Type - ignoring operation : This is an aftereffect in most cases.

Unresolved external variable : The specified variable name is not provided by lzardware

driver for access to mapped memory.

Use does not fit declaration : You are using a parameter of a different typspeified in
the declaration of the function.

Use of 'extern' not allowed here . Only runtime-library functions may be declared as
external.

12.3Fatal Errors

These messages indicate internal compiler erratsaife not caused by the user. Nevertheless they
may be caused by the error handling of the comfuitereffect of a user error). This means that the
fatal errors should disappear in most cases, iiffee program is corrected.

If you get a fatal runtime error by the machines ghossibly indicates that the machine itself @& th
compiler is defective.

Although bugs of the compiler or virtual machineusa fatal errors, it may be possible to find
workarounds by changing the user program. Forrdason, you will find some hints on effective
changing your program. In some cases it also mayeljgful to force the creation of internal help
variables by adding useless calculations liketl:l). Sometimes it is possible to find a
workaround by inserting a ‘senseless’ statemeke (lj) before (or even inside) the part of your
program that causes the error.

Cast error : The compiler cannot perform an implicit cast. Si8 definitively a bug inside the
compiler and should not occur. Perhaps you carteci@avorkaround by using local variables for
provisional results. Possibly it would help to esglicit typecasts.

JumpStack corrupted : The internal table of jump-addresses for loopsamditional expressions
(like if...else, switch...) is corrupted. As a warkund you may try to eliminate some complex loops
or conditional expressions.

Memory error : The managing of local help variables detecteda#function. As a workaround
you may try to eliminate implicit help variables hging local user-defined variables (instead of
a[bc]... try d = b*c; a[d]...).

Not implemented : At compile-time, this message indicates that soeiusing a rule of the OCL

grammar that is not implemented yet. Your sour@dabply will be correct in a future version, but
you have to reword the statement if you want iggéd compiled now (for example: Uge ... else

... instead of .2 ...: ...). If this error occurs at runtime, it may iodie that your program contains
illegal memory write commands that destroy the cddee compiler or the virtual machine should

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 52 of 71

detect almost all cases of illegal memory accegséspossibly you found a technique to avoid this
detection.

Stack corrupted . Runtime error. The code generated by the compibes incorrect stack
handling. As a workaround you may try to eliminstene function calls.

Strange : This internal error is really strange.
Symboltable inconsistency : The symbol table does not contain the expectedrration.

Type not implemented here . If there are no preceding errors, this messadeartes a bug
inside the compiler. Otherwise this message maytreesm former ‘'unknown symbol'-errors.

Value can't have an address : Definitely a compiler bug — without any known Wwaround.

Z=9 = |Institut fir Datentechnik . - -
/.===J=='= und Kommunikationsnetze] OSI RIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 53 of 71

13 List of Keywords

The following list contains the keywords of OCL thaay not be used as variable or function
names:

abs, acos, asin, atan, at

bool, break

case, const, continue, cos, critical
default, do, double

else, enum, exp, extern

false, fixed, for

if, int

In, log, long

random, return

safe, seed, signed, sin, sizeof, signal, sleepg,ss&ruct, switch
tan, true, typedef

union, unsigned

void

wait, while

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 54 of 71

14 OCL Compiler & UDP Manager

The OCL Compiler contains the ground part of theFUDanager. It generates files that can be
uploaded directly to DPU via service 6.

All functions (UDPs) that are declared once wilinagn declared in all later compiler runs as long

as they are not removed explicitly from the syntible. Opposite to that, declarations of data types
are not stored for later compiler runs. That megosg, should store all commonly used data type
declarations in one file that can be included bgailirce files that make use of these types.

14.1 Configuration

Configuration of the OCL compiler is done using pedal file. The default name of this
configuration file isOCL.ini (inside the current directory). The name of this ¢an be altered by
using the command line parametefg filename as first parameter or by setting the environment
variableOCLCONFIGo the desired name and path.

If OCL does not find the specified configuratiofefit will create it (filled with default values)t
you already have this file with only some optionssing, you can call OCL with the parameter
—write.ini to add all missing options with their default vedu

14.1.1Search Path for Including Files

The directories to be searched for files that shdadl included#include) can be specified with
the keywordSearchPath: . Particular directories have to be separated bigemicolon). The
search path should (at least) contain the curreattdry. (dot).

The search path can also be specified by usingetiv@onment variabl®©CLSEARCHPATHI he
value of this variable is appended to the strirec#jed inside the configuration file.

14.1.2Aborting After a Couple of Errors

The optionMaxErrors: inside the OCL.ini file allows to specify the nuentof compile errors that
may occur before aborting the compilation. Pleaste that the resulting number of error messages
will be value+2 (since value+l is the first messageeeding the limit and value+2 is tto®
many errors message). The defaultNM@xErrors: 7

14.1.3Hold Local up to Size

To allow the use of large local variables in conalion with a strictly limited stack size, the
compiler stores variables that exceed the sizeifsgeeavith the keywordHoldLocalSize: in
dynamically allocated memory.

Variables that are smaller than the specified areestored on the local stack, variables largar tha
the specified size are stored outside the locakstatomatically. The syntax of accesses to non-
local variables is exactly the same as of accdsdesal variables.

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 55 of 71

Accesses to variables on the local stack are félstar accesses to dynamically stored variables.
Setting the limit too low will cause loss of perfance while setting the limit to high may result in
stack overflow errors. The default valuddisldLocalSize: 8

14.1.4Warning Message Suppression

Generation of warning messages (see 12.1) cangpeessed vi®CL.ini like follows:
Warnings: (O((+|-) WarningTextd)*)

WarningTextis the message text,deactivates the warning. All entries of this hsive to stand in
a new line. After the first run of the OCL compijlé@CL.ini contains a complete list of all
warnings.

14.1.5Debug Information

The OCL compiler can store additional debug infdramainto a file. Which information is to be
stored can be specified in tB€L.ini file using the following keywords:

* Debug: (yes |no) generate file or do not generate debug file at all
* ShowCode: (yes | no) show the generated token code

» ShowkFirstPass: (no |yes) show the code even of the first paSedwCode: has
to be set tges in this case)

+ ShowSymbols: (no | yes) show the symbol table
+ ShowTemp: (no | yes) show allocation of internal variables for tempgraasults

Normally, only the first two options should be s®ies. The other three options are more useful for
internal compiler debugging. The name of the féda de specified inside tH@CL.ini = using the
keyword DebugFile: . The default name i©CLdebug.txt . Normal compiler runs append their
data to this file, only the initial compiler run iflwout an existing symbol table file) will replaea
existing debug file.

14.1.6Command File

The filename of the command sequence generateldeb@CL compiler can be specified using the
keywordCommandFile: .

The default filename isommand.bin . You may use the wildcard inside this specification. This
causes the compiler to replace this characterdpnarated text depending on its current action and
take the resulting string as output filename. Rlemste that some special characters may be
replaced by underscore () for file name creation.

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 56 of 71

14.1.7Symbol Table File
The name of the file containing the symbol tablee(d4.6.2) is specified using the keyword

SymbolFile: . If the OCL compiler does not find that file, gsumes to be called the first time and
enters the initialization mode. The default filem&aisOCLsym.txt .

14.1.8Log File

The keywordLogFile: specified the name of the file that contains aediding information. All
compiler runs append their output to the existileg f

14.1.9Compression Table

The compiler uses a user-defined compression tdiles filename is specified behind the keyword
CompressionTable: . If this keyword is not specified, the built-inbta is used to generate
compressed token code.

For further information about the compression amal format of user defined compression tables
see document IDA-OCL-0004.

14.1.10Preserving UDP-IDs

You can make sure that certain UDPs get certain IDs

PreservediDs: (O (ID UDP-NameQ)*)

The ID has to be larger than the number of builidimctions. It is not possible to preserve IDs that
are already used by other UDPs.

14.2 Compilation and Handling of UDPs

The OCL compiler should be used to compile UDP @®@nde to token code as well as to generate
commands for upload and deletion of UDPs and forciantrol.

14.2 1Initialization

If no existing symbol table file is found, the coilep enters the initialization mode automatically.
Only in this mode it is allowed to specify "extefnnctions. Since these functions are built-in to
DPU, external declarations only affect the grouaddal symbol table. It is important to use the
correct declaration order at this point, becaukeadlls to functions are handled using their IDatth
depend on the declaration order.

If a symbol table file (see 14.6.2) is found, itnist allowed to declare any other function to be
extern any more.

The compiler run for initialization looks like amther call for compilation of multiple UDPs, but
the source file should only contain all declarasiof external functions. The declared functiong wil

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 57 of 71

remain declared in all later compiler runs, as laaghey are not deleted explicitly from the symbol
table file.

ocl —mc declarationsFile
ThedeclarationsFilecould be namehit.ocl , for example.

If you use the wildcard inside the command file name, it will be repladgdthe name of the
declarationsFile(without the extension, e.gmit.ocl will result ininit).

14.2.2Compiling a UDP for Execution on Startup

To generate a UDP which is executed automaticallys@rtup of the OCL space segment, no
special compiler option is needed. The UDP Managéates the execution of the POP with the
lowest possible ID, if it is name@lutoStart (case sensitive) andbes neither expect parameters
nor returns any value. So, to create this startDf2lthe following procedure should be used:

1. Initialize the ground symbol table (see 14.2d, —-mc declarationsFile

2. Optional (but recommended): determine the firstsgauID from the generated ground
symbol table file and preserve this ID for the UBMRoStart (see 14.1.10). For the DPU
Software version 7.03 the ID alitoStart has to be 99.

3. Compile the file containing the UDRutoStart (see 14.2.3). If you left out step 2,
AutoStart = must be declared as first UDP inside of this (ileid AutoStart () ;).
Please be aware thalitoStart cannot access any POP before it has been loagéditix
by calling the appropriate RTL functiond@dPOP). Only RTL functions are available
immediately.

4. Send the token code to the UDP Manager.

5. Save (at least) the UDRutoStart into NVRAM (see 14.3.1).

That's all. Step 2 is recommended, because it sll@asier deletion and replacement of the
AutoStart UDP. Please be aware that saving POPs destrogsngxPOPs with higher IDs. That
means, re-saving only an updata@dtoStart to NVRAM may invalidate the following UDP
library.

14.2.3Compiling Multiple UDPs at Once

14.2.3.1Input From File

Sometimes it may be useful to create multiple URP®nce. To do this, you can create a file
containing all desired UDPs (functions) and comjpilesing the optioamc (multiple compile). On
success, the compiler generates the code for upboS4C and appends it to the fdemmand.oct .
Additionally, all defined functions will be added the symbol table fileymbols.tab for use in
later compiler runs. Of course it is allowed toluae other files and define own data types.

The compiler call is as follows:

ocl —mc sourceFile

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 58 of 71

Normally, thesourceFileshould have the filename extensioad
Of course, this can be used even to compile filas¢ontain only a single UDP.

If you use the wildcard inside the command file name, it will be repladgdthe name of the
sourceFile(without the extension).

14.2.3.2The generated UDP token code is compressed. If want to generate uncompressed
UDP token code, you should usecu instead o=mc.Input From Standard Input

It is even possible to compile input from the stmadnput device.

ocl =stdin can be used if the output file name specifiecbg¢hini contains no wildcards,
otherwise you have to specify the name of the dutleuexplicitely:

ocl =stdin outputFileName

The input will be piped into a temporary file. Caapon will start not before the standard input
reaches EOF.

14.2.4Compiling One UDP for Execution at Certain Time(s)
This is done by using the optieft (time line compile).

The commandacl -tc "code" (time)* can be used to generate a UDP that should bedtarthe
given time(s). Afterwards, the UDP will be removagomatically from DPU memory. THeode"
must not have the normal function header (retupe,tyitle and parameters) and should not return
any value. It is supposed to contain only one f@wacalls to more complex UDPs.

time is specified in seconds and corresponds to the ¢tihthe DPU. You may specify fractions up
to milliseconds.

The generated UDP will get a name consisting ofUb# ID and the first few characters of the

source code. The name will be displayed on suc&@ssupload, the UDP will be automatically

inserted to the timeline for execution at all speditimes. The UDP will be executed as often as
times are listed. After that, the UDP is deletetbaatically from DPU memory.

If you use the wildcard inside the command file name, it will be replatgdthe generated name
of the UDP followed by the keywoftime .

14.2.4.1Example

Assume that slot 9 is the first free UDP slot.
ocl —tc "sleep (10)" 123.456 234.567
This line will create a UDP named09:sleep_(10) that is stored in the file

009 _sleep_ 10 _Time.bin . The UDP will be executed two times (at 123.456Ga®t 234.567sec)
and deleted afterwards.

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI lgom;runikzt?gn?r:]e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 59 of 71

14.2.5Compiling One UDP for Immediate Execution

Using the optionxc, (execution compile) the compiler will generateledor a UDP that will be
executed directly after upload and it will be reradvafter execution. The calling syntax is the
following:

ocl —xc "code"

"code" must not have the normal function header (retype,ttitle and parameters) and should not
return any value. It is supposed to contain onlg on a few calls to more complex UDPs. The
generated UDP will get a name consisting of the UDRNd the first few characters obde The
name will be displayed on success.

If you specified a command file name with a wildGaasterisk is replaced by the generated UDP
name followed byexec .

14.2.6Replace an Existing UDP

If you want to replace the code of an existing Uiyranother, you should use the option
-rc . UDP-nameUDP-file

UDP-namespecifies the UDP that has to be repla¢¢dP-file is the name of the file containing
the new source code of the UDP. The interface ®U4bP (name, return type and parameters) has
to remain exactly the same as before.

Uploading the replacement code does not changelitimentries. Replacing UDPs is possible only
if the affected UDP is not currently running, se tiDP manager will wait a couple of seconds for
the UDP to finish (if necessary). During this tinealls to this UDP will fail. Afterwards, all calt®
the replaced UDP are handled like before.

If you specified a command file name with a wildaasterisk is replaced by the generated UDP
name followed byreplace .

Please note that the replacement command is geddmta specific timestamp. It cannot be used
to replace any other version of the same UDP witdhifferent timestamp. This should prevent
mistakenly replacement of UDP versions.

14.2.7Execute a Certain UDP

You may initiate the execution of an existing UDRttdoes not need any parameters by using the
option=run .

ocl -run UDP-namegenerates a command that starts the executioneohamed UDP directly
after upload. Of course, the mentioned UDP hagtprbsent at the DPU's memory already.

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byRun.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 60 of 71

By default the OCL system uses up to 10 differeintual machines for UDP execution. For
emergency handling a preserved"Iachine is available for ground commands only @@L
start command (10.5) will never initiate the executioh WDPs on this machine). A UDP
manager command to use the preserved machine doexbcution of a specified UDP will be
generated by the OCL compiler when invoked withftll®ewing command line:

ocl -masterrun UDP-name

The command will try to initiate the execution dDP-nameon the preserved machine. If this
machine is not available, the UDP manager will stsedcommand to the standard machines.

14.2.8Remove a Certain UDP

Sometimes you may want to remove a UDP from DPWgigg the optioadel UDP-name This
generates a command sequence that causes the DPundbager to delete the UDP specified by
UDP-nameand remove all associated entries in the time Riease note that only UDPs that are
not currently running can be deleted. NeverthelgmsUDP manager will wait a couple of seconds
for the affected UDP to finish.

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byDel .

Please note that the generated command sequenamnlyabe used to delete the UDP with the
timestamp found in the symbol table at generatioret The deletion will fail if the timestamp
differs. This should prevent mistakenly deletiormased by unintentional later repetition of the
command sequence (which could affect a differenPWidth coincidental the same ID). If deletion
fails, you will get a message containing the onrddanestamp of the UDP. If you are sure about
what you are doing, you can correct the ground dagenbol table's UDP timestamp (see 14.6.2)
and generate a new deletion command sequence.

14.3POP Handling

POPs are UDPs that are stored in the DPU's NVRAMI dan easily create POPs from any UDP in
DPU memory. POPs are useful to avoid wasting trasan time for uploading large amounts of
UDP data to DPU from earth after a reset.

14.3.1Save UDP to NVRAM

It is possible to save UDPs in sequential ordeNYXRAM. You can generate the corresponding
command using the OCL compiler with the opti@ave followed by one or two parameters:

« ocl -save all saves all UDPs at once to NVRAM. Existing POPd Wwé overwritten in
NVRAM. Behind the last written UDP an EOF marketlwe written to indicate the end of the
used NVRAM area (useful for later POP operatioR€)Ps behind the EOF marker will not be
accessible any more.

* ocl -save UDP-ID saves only the specified UDP to NVRAM. A possibkisting POP with
the same ID will be lost, existing POPs with a leiglD may be overwritten. This command

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 61 of 71

does not write an EOF marker, so POPs with highegemain accessible (unless they have been
overwritten by the new POP).

» ocl -save first-ID last-ID saves all UDPs frorfirst-ID up tolast-ID to NVRAM. All POPs
with an ID fromfirst-ID up tolast-ID will be lost, POPs with a higher ID may be ovetten.
An EOF marker is written only if last-ID exceedg thighest ID of currently available UDPs. In
that case, all previously existing POPs friwst-ID on will be made unusable.

Please note that the UDPs are stored with thermuedues of its static variables.

If you replace an existing POP with a larger varsiollowing POPs may be partially overwritten.
That means, you will not be able to restore thenasxiten POP from NVRAM and probably you
will receive error messages during POP state chgaki POP loading. Nevertheless, all untouched
POPs behind will remain usable, and the (partialilg$troyed POPs cannot corrupt the on-board
symbol table or virtual machines.

If you specified a command file name with a wildtamasterisk is replaced b$avePOPs,
SavePOP_UDP-ID or SavePOP first-ID - Last-ID (depending on the used option).

14.3.2Load POP from NVRAM

UDPs stored in NVRAM can be restored into DPU memdihe appropriate command can be
generated with the OCL compiler:

 ocl —-load all reads all POPs from NVRAM. POPs that are alreadggnt as UDPs in DPU
RAM remain untouched. If you want to restore alleshPOPs you should make sure that all IDs
of the saved POPs are currently unused. This optiag be especially useful after a UDP
manager reset.

e ocl -load POP-ID reads the specified POP from NVRAM into DPU RAM. pssibly
existing former UDP with the same ID will be loHtthe interface of the existing UDP differs
from the POP's interface, the UDP remains untoueimeithe load fails.

« ocl -load UDP-name replaces the existing UDP with its pendant from RAM, if the
interface matches.

Please note that restoring POPs from NVRAM may e€ansonsistencies between the DPU-based
symbol table and the ground-based table. Note thiabloading from NVRAM will restore the
states of all static variables of the restored R®tPeir values at saving time. If you want to oest
the initial values you have to save the UDP beifgrérst execution.

If you specified a command file name with a wildtamasterisk is replaced blyoadPOPs,
LoadPOP_POP-ID or LoadPOP_UDP-name(depending on the used option).

14.3.3Check POPs in NVRAM
The current state of the NVRAM can be checked liygus

ocl —POPstate

The resulting command causes the UDP managerumrattable of contents of the NVRAM. The
integrity of each found POP is checked by a chetksu

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]
TECHNISCHE UNIVERSITAT))
BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009

Project:

OSIRIS Description Page: 62 of 71

14.4Job Control for Debugging

The OCL compiler can be used to generate job chinjcommand sequences. Please note that all
following job control commands affects all tokerterpreters currently executing the mentioned
UDP as top-level UDP. You cannot control a certaiken interpreter. (This should be not real

problem, since in most cases all interpreters deezwnique top-level UDP.)

14.4.1Pause a Certain UDP

For debugging purposes it is possible to pausexkeution of a certain top level UDP by using the
option-stop UDP-name The generated command will stop the executiothefspecified UDP.
Please note that all currently running instanced@P-namewill be stopped. Please note also that
only top level UDPs can be stopped explicitly, bldPs that are called by a stopped UDP will stop
also.

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byStop .

14.4.2Resume a Certain UDP

After stopping a UDP, you probably may want to rasuthe execution of this UDP. Therefor you
can use the optiorcont UDP-name This command will cause the UDP to return to rarm

execution mode. Please note that all current ies&fUDP-namewill be resumed. Please note
also that only top level UDPs can be resumed eixlglibut UDPs that are called by a stopped UDP
will be continued also.

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byCont .

14.4.3Execute a Single Command of a Certain UDP

If you want to execute the UDP step by step, you io#tiate the execution of the next OSIRIS
command token by using the optiestep UDP-name Please note that stepping a UDP that is
currently executed by more than one interpretdraaiise unpredictable effects.

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byStep .

14.4.4Quit a Certain UDP

If you want to abort the execution of a certain tepel UDP, you should use the optiequit
UDP-nameto generate the appropriate command. Please hatethe generated command will
abort the executions of all instancedJP-name

Quit will do a soft abort of the UDP on the nextea fetch. That means, called external or system
functions (likesleep) will not be interrupted. Possibly called sub-UD#B be left directly via the
normal returning mechanism and clean up properly.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 63 of 71

If you specified a command file name with a wildtaasterisk is replaced by the UDP name
followed byQuit .

14.5Customize DPU-Based UDP Manager and Token Interpret

Commands for customization of the DPU-based pald@P manager and token interpreter can be
generated easily using the OCL compiler.

14.5.1Set UDP Interpreter Options

It is possible to change some internal settingghefOSIRIS command token interpreter using the
option -set stackSize errorNumber tableSize timelLineSize timeTolerance verbosityLevel
msgPerSec PMsizdt is possible to use “-1” (minus one) for elertsawhich should not be altered.

Please note that the OCL timeline is probably deaietd in the flight-software. In this case, the
values oftimeLineSizeandtimeToleranceare ignored, but have to be specified; the corairom
message contains O for these parameters, anyway.

14.5.1.1stackSize

This is the size (in long) that is used for thealagtack of the token interpreter. Since each nt&a
of the interpreter has its own local stack, theks&hould not be too large. The stack is usedaie st
user-defined variables, parameters, local dataraftions and so on.

A small stack is enough if you do not need muclalloeemory or a large function call stack. If you
need large amounts of local memory and use deepsiens, you should increase the stack size.

All instances of the token interpreter use the sataek size.

14.5.1.2errorNumber

This value specifies the number of runtimes ertbeg have to appear to abort the current code
execution. The machine will continue execution @lifjh there might be runtime errors, as long as
this number is not reached. The value O (zero) syehat there is no limit for runtime errors. If a
interpreter has reached the maximum number of menterrors, the interpreter will quit the
execution of the current UDP.

A small group of runtime errors causes immediatertsb independent of the value set here. A
runtime error of this type is a stack overflow.

14.5.1.3tableSize

This value specifies the number of UDPs that carhdld simultaneously in the DPU's symbol
table. If you specify a value that is larger thiae turrently set size, the DPU's symbol table kgl
enlarged. If the number is smaller, the table wdlshrinked. Please note that the number has to be
greater or equal to the maximum UDP ID currentlipaded.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 64 of 71

14.5.1.4timeLineSize

This specifies the number of time line entries @&t be hold at once. You cannot shrink the time
line to a size smaller than the current numbersefientries.

The built-in OCL timeline feature will probably ba@eactivated in the flight software, so the
specified value is ignored.

14.5.1.5timeTolerance

This specifies the maximum allowed belatednessnaé fine started UDPs. Time line entries that
lay further in the past thatimeTolerancemilliseconds are treated as outdated and remawed f
time line without execution.

The built-in OCL timeline feature will probably beéeactivated in the flight software, so the
specified value is ignored.

14.5.1.6verbosityLevel

The number of TM messages generated by the tokerpreter and UDP manager can be changed
by increasing or decreasing the verbosity:

* 0 means no messages at all

* 1 only error messages

« 5 start, stop, reset will be messaged as wellrafgesiUDP load, delete or save and normal
POP info

e 10 show nearly all (at the moment there are no agess which are suppressed in this
verbosity level)

e 15 show all

14.5.1.7msgPerSec

This value specifies the maximum number of TM megesaper second generated by the OCL
system. If more messages are produced in one se©@lidpauses to prevent TM buffer overflows.

14.5.1.8PMsize

This value specifies the number of long (32 bitslues to be reserved for the PM global variable
pool.

14.5.2Reset UDP Manager

The option-reset UDP manager The OCL compiler may be used to generate a command
sequence that causes the UDP manager on the D&dadull reset by. That means, all UDPs are
stopped and deleted from DPU memory, and all gsttare set to their defaults. UDPs that cannot
be quitted in a couple of seconds can not be dkldtethis case, the reset will not be done
completely.

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 65 of 71

14.5.3Compiler options

This section contains some options that affecttmpiler behavior only.

14.5.3.1Create list of all preserved IDs

The option-list filename causes the compiler to write a list of all preseriDs with
corresponding names and parameter sizes intoléfddhame

14.5.3.2Complete .ini-file

The option-write.ini causes the compiler to replace the current i@iky a completed version.

14.5.3.3Configuration file

The option—cfg filename as first option of the OCL compiler can be usedgecify a certain .ini-
file. It may be followed by any other option debexd in this section.

14.5.3.4Include files

The option-include filename(+ filename)* as first option or directly after the configuratible
option (see 14.5.3.3) specifies files that areddrizluded for the compilation. This option can be
used in combination withxc and-tc , where preprocessor directives won’t work.

14.6 Outputs

14.6.1Command Sequence File

All command sequences generated by the OCL comguiéesaved to file. This file can be uploaded
to DPU. The name of this file can be specified dasthe OCL.ini file using the keyword
CommandFile: (see 14.1.6).

14.6.1.1Examples

CommandFile: code.bin

This line will cause each compiler run to appenel generated data to the file nancede.bin
This file should be deleted after successful upload

CommandFile: *.bin

The compiler will generate a filename consistingaadtring depending on the call parameters and
the extension.bin . Compilation of the file StandardUDPs.ocl would result in the file
StandardUDPs.bin

Please note that the generated code will replaexisting file with the same name, if you use the
wildcard option for the command file name.

7575_5:—: Institut fur Datentechnik OSIRIS Ref.: IDA-OCL-0001

und Kommunikationsnetze]

TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 66 of 71

14.6.2Symbol Table Logdfile

The symbol table file contains the interface oftdllPs that are present on DPU. Data types are not
stored and have to be defined separately. The Wizfaces are stored in the following format:

UDP = ID [Fc | Fs | E] nametimestampexternflag[return] (parameters

The coderc specifies a critical function arfes specifies a safe function, whike just specifies a
normal function.

ID = 8 digits hex value
name = up to 64 characters
timestamp = 8 digits hex value
externflag = (- 1&) (& is extern; : is not extern)
return = symbol
parameters = (symbol)*
symbol = Ainfo elementq symbol) (array of symbols)
| Sinfo size((symbol)*) (structure of symbols)
| Uinfo size((symbol)*) (union of symbols)
| (BIN|I | R)info (simple symbol)
| Vv (void symbol)

The characterg, S, U, B, N, I, R andV specify the type of the symbadkrray, Structure,Union,
Boolean,Natural (unsigned integer) valuenteger valueReal (floating point) value andoid. The
flag & specifies reference parameters.

info = offsetreference externflag

offset = 8 digits hex value (offset of the data inside ritemory)
reference = 8 digits hex value (offset of the pointer insidemory)
elements = 8 digits hex value (number of elements of arrays)
size = 8 digits hex value (size in memory units)

The symbol table log file is read before each UDdhipulation. Its contents should correspond to
the information held in the DPU part of the UDP m@ger. If there is a difference between the
ground symbol table and the DPU table, this care lawo reasons:

Z/ =4 = Institut fur Datentechnik .
/5)55“ unnsdI Eom;runikzt?gn?r:\e?;e OSIRIS Ref.. IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 67 of 71

1. Not all generated command sequences have beendedida DPU (due to not sending or
upload error)

2. A malfunction of the UDP manager or memory hazard

To prevent malfunctioning of UDPs you should chdek consistency of both tables once in a while
(dump the DPU's table and compare it with thig file

The name of the symbol table file can be speciiteide theOCL.ini file using the keyword
SymbolFile: (see 14.1.7). The default file naméSLsym.ixt .

14.6.3Command Sequence Information Logging

For archiving purposes, all successful generate@%)&re logged. The logging information consists
of the UDP's source code followed by the ID andestamp of the generated UDP. The source code
inside the log file is preprocessed, #ficlude s are inserted and uses of symbols that are defined
by #define are replaced already. Source code taken fromdbidile can be used as input for the
OCL-compiler without modifications. Each loggingfisished by a final message containing the
name of the generated file and the generation time.

The name of the log file is set @CLlog.txt by default and can be changed using the keyword
LogFile: inside the configuration fil©@CL.ini

14.6.3.1Example

Let's assume, you run the OCL compiler three tim#s the following commands:

ocl —mc Init.ocl
ocl —xc "return true"
ocl —rc NEGATE correction.ocl

After these calls, the log file may look like tlfsithout the explanations, of course):
long NEGATE (long lIn)

return ~lin;

}

It starts with the source code of the generated UDP

#ifdef SHOWGENERATEDCOMMENTS
I
/ UDP information

/1D timestamp name

// 008 0x3b04db18 NEGATE
I
#endif

followed directly by some information to the gertectaUDP: The ID of UDRNEGATEis 008 and
it's timestamp i9x3b04db18 .

The#ifdef /#endif is used for eliminating this automatically genedainformation, if code from
the log file is recompiled.
e T T

in: Init.ocl
out: Init.bin (new)

und Kommunikationsnetze]

: = Institut fur Datentechnik OSI R I S Ref.: IDA-OCL-0001
TECHNISCHE UNIVERSITAT

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
OLRIS Description Page: 68 of 71

logging closed on Fri May 18 08:19:36 2001
T T R R T PR PR

These lines mark the end of a compilation run. @hginal input file was namethit.ocl , the
generated UDPs has been stored inside the comniandittbin . The(new) means, that no
previous data is stored inside the command filgoif do not use a wildcard * inside the name of
the output file given inside ocl.ini, all commandsdl be appended to this file. In this case, you
would get the messa@add) instead. At last, the generation time is logged.

exec{
return true

3
This is the source code of the compiler run foredirexecution. Thexec{ } is generated
automatically due to compiler needs. It is followsdthe UDP information.

#ifdef SHOWGENERATEDCOMMENTS
I
/I UDP information

//' 1D timestamp name

// 009 0x3b04dc9c 009:return_true
I
#endif

Of course, even this OCL-compiler run generatesa message:

T R R PR
out: 009_return_trueExec.bin (new)

logging closed on Fri May 18 13:28:13 2001

T R R PR

Thein: line is missing, because there has been no ifpubfit only direct input. The third call of
the OCL compiler replaces the former version of UTEGATE Of course, the former version will
remain inside the log file in addition to the nemeo

long NEGATE (long lIn)
return —lIn;

}

#ifdef SHOWGENERATEDCOMMENTS
I
// UDP information

//'ID timestamp name

// 008 0x3b04dcad NEGATE
I
#endif

(As described above)

T T R R T PR
former timestamp of UDP: 0x3b04db18

out: NEGATEReplace.bin (new)

logging closed on Fri May 18 13:31:57 2001

T T R R PR

The first line of the final message mentions thmestamp of the former version that will be
removed from DPU memory.

i?)_; Institut fur Datentechnik
4= und Kommunikationsnetze|

TECHNISCHE UNIVERSITAT

OSIRIS Ret.

IDA-OCL-0001

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
Project: H H))
OSIRIS Description Page: 69 of 71
15 Index
" SHIUCTUNE ... e 17, 24
(V0o o TP 17, 24
#define ..o, See preprocessor (define) user defined ..., 16
#ifdef......... See preprocessor (conditional compilation) debugging........cooeiiiiiiiii e 41
#includeoocovveveeennnn See preprocessor (include) decimal NUMbDEers ..., 10
#undef ..o See preprocessor (define) default ... 12
dowhile.........cooeeiiiiiis See loops (do while)
A double ... See data types (simple)
arithmetical operations.. See operations (arithmetical) dual NUMDETSoviiiiiii e 10
array E
OPEIAtIONS ...t 35
TANGES ..etvveieeeeiitiieeeeeseitreeeeesssrreeeeessnsbaeeeaeesanes 25 (10103 o O See data types (enumeration)
unknown length ... 21, 38 error
assignmentcccceeeens See operations (assignment) handling at compile timecounvvveen. 54
different typesoevevvvciiiiii e 15 handling at execution time...........ccccccevvverinneen. 63
AutoStart...........oooeciiiiiiee See startup procedure MESSAGE ...evvevverieerrereieeteeteeaeeeeeesmmmenenrerreeeeeeeeees 48
B F
DOOl ... See data types (simple) fatal error
Break ... 12,13 MESSAYE ..eveeeeeeiiirieieeee et eee e s s mmemam srrereeeeeanes 51
c workaroundSee tips (compiler bug workaround)
files
CASE ettt et e e e e e et ettt a e e e e e e eeraanaaaaas 12 command OULPULcuuvvveeeeiiiiiieeeeimeeeene 55, 65
(0= 11=To o] VU UUUUPUPRRT 39 10G fil€ e 56, 67
CHEICAl .o e 39 symbol tableccceeveiiiiii e 56, 66
SAFE . 39 fixed ..o, See variables (global)
commenting See preprocessor (commenting) O See loops (for)
compiler forward declaration
from stdin ... 58 data SIUCIUIES.....cceeiiiiiiiicee et 15
immediate executionccccciiiiiieeeeneeenn. 59 functions......... See function (prototype declaration)
initialization See symbol table (initialization) FUNCHION ..o 37
multiple UDPs at oncecccoooeeiiiieeeeee e, 57 definitionooovvieiiee e 37
timeline ... See timeline parameter.........ccoovvveeeeeiiiiiieeeee e See parameter
CONfIQUIALION ... 54 prototype declaration............cccueeeveeieeeecinneenen. 37
CONSE..ceeiiiiiiiiee See data types (constant) recursive Call ... 37
CONSEANE VAIUESvvviiiiiiiiiiiiiie e e 28 FEIUMM ..o 37
BITAYS ettt e 29 G
CharaCter ... 28
coOMPIEX SIUCIUIESovvviiiiiiiiiei i 29 [0 o (o TSR PPTPTRPPTIN 11
NoN-ASCII characters..........ocvveeeeiiiiiiieeeeeens 28
SENG 1o 29 H
SHUCTUIES .. 29 hexadecimal numbers..............cccoiiiimmnecc i, 10
unions
continue !
CritiCal ... e& Category (critical) ifthen elSe ... 11
D include filecccccovveveee. See preprocessor (include)
initialization See symbol table (initialization)
data types L
= g - | 16, 21
CONSEANT ... 18, 23 logarithm ... See operations (logarithm)
CONVEISION ..eeiieiiiiiiiee et e e 15, 26 logical operations................... See operations (logical)
ENUMETALION......eeiiieiiiiiiiie e 16 IONQ oo See data types (simple)
SIMPIE . 15 loops

i?)_; Institut fur Datentechnik
4= und Kommunikationsnetze|

TECHNISCHE UNIVERSITAT

OSIRIS Ret.

IDA-OCL-0001

BRAUNSCHWEIG Command Language|'ssue: 1.5 Date: 02/06/2009
OSIRIS Description Page: 70 of 71
AdOWhIlE....ooviieeeeeeee 13 SIgNedovviiiiiiiieieeieeeeeeeee e See data types (simple)
B0 e 13 simultaneous executionccccooeuvv e e e e 41
WHIE ...t 13 SINE .t See operations (sine)
M SIEEP v See triggering (sleep)
SEACK oot e 19, 63
MemMOory Managementcooeeuuuiuiuiiiieaeeeeeeeeeeeeees 54 startup ProCedure..........cccoovvvvveeees s s esevveeeeeenns 57
MNESSAGE ..eeeeeeineiviieeeesitiereeeessssssmammmnsteeeeeesansssneeens 45 StIUCE .., See data types (structure)
MOdUlO.......cveveeeeiiiiieeees See operations (modulo) SWILCH oo 12
SWILCH - CASE ..o 12
N symboltable ... 10
NVRAM INItIAlIZALION.evi e 39, 56
load POP fromccccovviiiiiiieiiiiiccceeee, 61, 62 SiZe At DPU.....cooiiiiiiii e 64
SAVE UDP 1O ..ottt 61 symbols
0o 172z 1o 1 10
, . T
OCLANI et See configuration
octal NUMDErS ... 10 tangent...........ccoooiiiiciinnne See operations (tangent)
OPEIALIONS ...veveiiiieiieiei e 32 tME [N oo 58
arithmeticaloeviii 32 Size at DPU.....oooiiiiiiii e 64
AITAY .ooeveeeeieiiee e See array (operations) time tolerance
ASSIONMENT.....eiiiiiiiiieii e 35 of DPU UDP manager..........cccccovvvviveieeaaeneenne 64
10garithMoeeieiicee e 33 tips
[0gICAl .. 32 compiler bug workaroundoocvvcceennn 51
(91700 (1] o TR 32 local held variable Sizecccooiiiiiieeiiiennee. 55
POWET <.ttt e e e e e e e eeeees 32 PErfOrmManCe.ccccoviiiviieeeiiiie e 13, 26
random Value..........oeeeeeiiiiiiiiiiiiiie s 34 reference parametersccvveeeesimmemmeneeeeenes 37
SIME ettt ———— e e e e e e 33 StACK SIZE ..t 63
TANGENT. ..ot it 33 triggering
options SIGNAL .. 41
DPU-based partscccccceeeeeeeiiiiiiii e 63 SIEEP it 41
ground-based parts.........cccccuvviiiiiiiiiiiieenneenenn. 54 L= UL SO PP O PP PPPPP P 41
P typecast ... See data types (conversion)
typedef ..o See data types (user defined)
PArAMELET ... 37 U
array with unknown Size..........cccvvevevicccccmeennnn, 38
TEfEreNCe.....cvviiiiiiiii e 23,38 UDP
PM e, See variables (global) EXECULE .ttt ettt e e e 60
PO .. 60 ID Preservation.........ooocveeeeeeesiuevmmseeeeeeeennees 56
POWET (POW) ..vvvveeeriiiiieeeeeninens See operations (power) MANAJET FESEL ...ttt eeee e e 65
01T o] (1o =21 o] 43 PAUSE ..o e 62
COMMENLING....cceeiieeieeciieirr e e e e e e e e e 43 Lo U SRR 63
conditional compilation...........ccccceevvvieeeeervennnen. 44 FEIMOVE ...ttt ettt e e e e e e e e e e mmmmmm bbb 60
(o = 1] = S 44 (=] 0= Lol PSR 59
INCIUAE ... 43 TESUIMEitieeiee et 62
Priority_ Changecccvvvvvveeereiee et 42 S ittt 62
R UNION oo See data types (union)
UNSIgNEd ..ovvvevieeeeeeeeeeeeeeeeee See data types (simple)
random...............oed See operations (random value) Vv
runtime library See function (runtime library)
variables
S global......oo 19
Safe. oo See Category (safe) initialization..........c.ceeeeeiiiiiie e 19, 21, 35
E ot] o 1R 10 ToTox | PO 19
search pathcccccoiii i e e e 54 SEALIC . 21,61
seed....occveeeieiiiiiieen See operations (random value) SEOTAGE «oeeeeiiitiie ettt 19

signal.......ccoooveivii e See triggering (signal)

VOId ..o See data types (simple)

7:=Ej:'===—: Institut fur Datentechnik

TECHNISCHE UNIVERSITAT

und Kommunikationsnetze] OSI R I S

Ref.: IDA-OCL-0001

BRAUNSCHWEIG Command Language Issue: 1.5 Date: 02/06/2009
Project:

OSIRIS Description Page: 71 of: 71

W MESSAGE ...eeevviieeieeii ettt et enmmma et eeeeenas 45
e S See triggering (wait) e DTESSIOM. oo P, (\'/;}H'i'l;s

warning

